The Hybrid Music System
for the BBC Microcomputer

AMPLE Nucleus

PROGRAMMER GUIDE

First published 1987
Copyright (C 1987 Hybrid Technology Limted. Al rights reserved.

Nei t her the whole nor any part of the information contai ned herein may
be adapted or reproduced in any formw thout the prior witten
approval of Hybrid Technol ogy Limted.

Hybrid Technology Limted
Unit 3, Robert Davies Court
Nuf fi el d Road

CAMBRI DGE

CB4 1TP

| ssue 2

Witten by Chris Jordan
I ndex prepared by Roy Follett

Cont ent s

1 Introduction 5
Part 1 - Ceneral 7
2 Using AMPLE 9

3 Prograns and words 17

4 Modul es and editors 21

5 Musi ¢ and sound 29

6 Nunbers and fl ags 39

7 Characters and strings 49

8 I nput and out put 55

9 Execution control 57
10 Machi ne-code programi ng 61
11 Errors 67
Part 2 — Reference 79
12 Dictionary of words 81

| ndex 203

1 | nt r oducti on

AMPLE is the software heart of the Hybrid Misic System and the
nost powerful rusic progranm ng environnent available on a

m croconputer. This Guide is the primary source of information
for music progranmmng in AMPLE, covering all facilities of AMPLE
Nucl eus, the ROW based core of the systemthat is conmon to all
applications. Application-specific information, particularly that
to do with use of particular hardware units, is deliberately

excl uded, being reserved for application Guides including the User
Gui de supplied with your system

Part 1 - GGeneral

2 Using AMPLE

AMPLE is designed to support different hardware installations
(combi nations of Hybrid Miusic Systemunits), and different
applications of each installation, with correspondi ng software
installations. A software installation may include:

* AMPLE Nucl eus — the ROW based core of the |anguage comon to
all applications. It provides those functions that are
required by all, and nanages the nodul es and user program

* nmodul es — di sc-supplied application-specific systemunits
i ncl udi ng hardware drivers, user interfaces and extensions
for use by the user program

* program — the conponent which deternines precisely what the
installation does. In the majority of applications, this is
the user's work piece, but in others it is a fixed program
supplied for a particular job.

starting the system

AMPLE is norrmally started using the systemdi sc supplied for the
particul ar application. The systemdisc usually has a text file
named ! BOOT, executed when the user runs the disc by pressing
SHI FT+BREAK. This 'boot' file carries out sonme or all of the
fol | owi ng:

1 set systemoptions, including those that may affect the
anount of |anguage nenory avail abl e

2 start AMPLE with the conmand *AVPLE

3 build the installation by |oading nodul es with | NSTALL

4 enter an editor (usually a Main Menu) or load and run a user
program

Most system discs do steps 2, 3 and 4.

*AMPLE i s the operating system command that enters the | anguage. You
are quite free to use it to start the | anguage nmanual |y, but since
nodul es will be required for nost uses, a boot file is the nore
usual rmet hod.

usi ng the conputer keyboard

AVPLE has two general 'nodes' that determnmine how user input is
interpreted: conmmand node and edit node

Command node is sinmilar in all applications. A '% pronpt appears
at the left of the screen when the systemis ready for input and
an underline cursor shows the current typing position. The user
types the line as normal, and pressing RETURN sends it to be
execut ed.

In command node, nost keys on the keyboard have their standard
functions, as foll ows:

printing character keys and space bar
enter letters, nunbers or synbol. The SH FT, SH FT
LOCK and CAPS LOCK work as standard with these
DELETE renoves the | ast character typed
RETURN i ndi cates the end of a |ine of commands
left, right, up, down and COPY

used as standard for re-entering by copying it from
a higher position on the screen

CTRL used in conbination with other keys to enter
speci al codes, in particular

CTRL U renove |line, but leave it on the screen
CTRL B turn on screen output to printer

CTRL C turn off screen output to printer

CTRL N turn on page wait node

CTRL O turn off page wait node

VWen page wait node is on, the display
wai ts after each screenful of scrolling
text unless the SH FT key is down.

CTRL SHI FT hold scrolling text (while pressed)

CTRL V does nothing. CTRL V's normal function
of changi ng screen node is disabl ed,
since this can corrupt |anguage nenory
on conputer nodels without shadow
nenory.

|
1
—h
(o]

enter a pre-defined sequence of characters. In
many applications, the function keys are defined
wi th comonl y-used conmands or comand segnents on
start-up. The user can reprogramthemwth the
*KEY commrand as nor mal

10

The foll owi ng keys have special functions:

TAB enter/exit edit node. Pressing TAB swi tches
bet ween conmand npde and the edit npde of the
editor in use.

ESCAPE stop everything, and return to the command node
pronmpt. This is used to stop any AMPLE operation
or running program ESCAPE has ot her effects
specific to the installation — in particular it
asks for all sounds to be silenced. See the
chapter '"Errors' for details.

BREAK reset the conputer. You should never need to press
BREAK in normal use of AMPLE. |If you press it by
accident, the systemw || attenpt to recover the
program You should save it imediately and then
restart the system

There is a linmt on the length of a single input line, normally
128 characters. |If you try to exceed this, the conmputer beeps and
i gnores the character.

Edit node is specific to the editor in use. Editors vary wi dely,
but all use TAB to return to conmand node. See the application
User Quide for details of a particular editor's edit node. See
the chapter 'Mdules and editors' for general information about
editors.

exanpl e prograns

By convention, if exanple user prograns are provided on the system
disc, function key 9 is defined to present themin a nenu, so the
user can always press f9 after systemstart-up to see a list of
exanples. Similarly, any disc with a conplete set of user
programs, such as a nusic al bumdisc, uses f9 as the standard

nmet hod of executing it.

This menu is often a user program called 'jukebox', so function
key 9 is defined as foll ows:

*KEY9| "j ukebox" LOAD RUN| M
VWhere the systemdisc starts-up in an editor's edit node, special
provision is usually nmade so that f9 still operates. For exanple,

the editor may respond to an ASCI| O input by returning to conmand
node, and f9 is progranmed accordingly:

11

*KEY9 | @] ukebox" LOAD RUN | M

ASCII 0 is ignored in conmand node.

screen displ ay

The system uses screen node 7 for nost displays. Mst editors

work in a specific node (usually 7) and set this when entered, but
conmand node can run in any screen node. You can select the screen
node wth:

MODE enter display node conmmand
nunber MODE

On conmputer nodel s without shadow nenory, the screen node affects
t he anount of nenory avail able for other uses, so you will
normal ly | eave the systemin node 7. There may in fact be
insufficient menory free to enter other nodes.

Sone characters appear with one design in nodes 0-6, and another in
node 7:

node 0-6 name node 7 appearance
[open (left) square bracket | eft arrow
] close (right) square bracket right arrow
A "hat' up arrow
| vertical bar or 'solidus' doubl e vertical bar
_ underline long central line
/ backsl ash "hal f' (1/2)

In this Guide, the normal designs (as nodes 0-6) are printed.

operating system conmands

In command node, operating system (QOS) comands are entered as
standard, prefixed with a '*':

* indicate operating system comand conmmand
*<|ine>

OGS commands that corrupt | anguage nenory are forbi dden. These

i ncl ude those commands that, in their own docunentation, are
descri bed as destroying the user program for exanple * COWACT &
*FORMBO (Acorn DFS), and *FX20 (0S).

Language entry comands act as nornmal, that is, they | eave AVPLE

12

and enter the correspondi ng | anguage, for exanple:
*BASI C

The AMPLE Nucl eus ROM responds directly only to the command *AMPLE
and its abbreviations, such as *AM It responds indirectly to the
*HELP command, giving its nanme and versi on nunber

AMPLE commands

The foll owi ng general information applies to all AMPLE conmands,

i ncl udi ng those provided by the Nucl eus. Nucleus conmands are
described individually in the chapter 'Dictionary of words'. See
the application User Cuide for descriptions of any extra comrands.

An AMPLE conmand is a word that carries out a particul ar operation
when entered at the command node pronpt. Conmands are in
upper-case letters only — you nmust enter themin upper case; |ower
case letters are used for other things.

You can put nore than one comrand on a single line. Each should
be separated fromits nei ghbour by one or nore spaces to be sure
to avoid confusion, though you may find that this is not essential
in many cases.

Sone special conmands actually re-enter command node, and so any
foll owi ng commands on the sanme line are ignored. This is made
clear in the descriptions of these comands.

Many conmmands take an input value which nmay be a string, nunmber or
flag. This goes before the nane of the conmand, again separated
by a space

type f or mat exanpl e
string characters in doubl e quotes "myprog" SAVE
nunber decinmal digits 3 MODE

flag ON or OFF OFF PAUSE

A few conmands take nore than one input val ue, separated by a
space.

Hex and negative deci mal nunbers are rarely used by conmands, but
often used by ot her words:

-ve nunber mnus sign, then decimal digits -100 NOUT
hex nunmber & sign, then hex digits .. &FFEE CODE .

See the following in the 'Dictionary of words' for nore

13

i nformation:
" start literal string

& indicate hexadeci mal nunber

- indicate negative nunber

0-9 decinal digits

Conmands nmay be abbreviated by a dot. The shortest abbreviation
for a given conmand depends on other comands in the installation
so you should try the intended abbreviation before relying on it.

Sone conmands respond with error nessages if they cannot act for
some reason. These are usually self-explanatory, but for detailed
informati on on a particular error nessage, see the chapter
"Errors'.

Because AMPLE is a multi-tasking system you can enter conmands at
the % pronpt while a programis running in the background. Sone
conmands stop the program (usually because they nodi fy the program
or its nenory) and this is nentioned for each one that does so.

Li ke commands, prograns can produce error nessages. These appear
on the screen at the conmmand node cursor (first switching to
conmand node if in edit node at the tine) and since an error can
arise at any tine, this could interrupt a line being typed at the
tinme.

Al most all AMPLE Nucl eus commands are al ways avail abl e i n conmand
node. In addition, there will be extra conmands provided for the
particul ar application, described in the application User Quide.
Further, the current editor may provide extra commands specific to
it — again see the User @uide. The names of all non-Nucl eus
conmands available in each installation and editor can be

di spl ayed on conmand — see the chapter 'Mdul es and editors' for
detail s.

In special cases, an AMPLE Nucl eus conmand nmay be replaced in a
given installation, or with a given editor in use, by a nodule
providing its own version with the same nanme. The repl acenent
usual Iy has the sane function as the original

14

starting a new session

After starting fromthe systemdisc, the systemis conpletely
cl ear of user prograns and other user data. This is the state
from whi ch you shoul d begin a session. To return to it at any
time, you use the command AVPLE:

AMPLE restart system conmand

15

16

3 Prograns and words

progr ans

An AMPLE programis a conplete set of instructions for a
particular job, for exanple, playing a piece of nusic.

In the nost general sense, the AMPLE user programis sinply the
main store for the user's data, and a particul ar AMPLE user
programis the contents of this store. This may or nay not be a
"programi in the traditional sense, that is, a sequence of
instructions to carry out a particular job — how the user sees the
program depends on the application, and in turn, the user

i nterface enployed. For exanple, the 'programi could be a

col l ection of independent instrument definitions for use with a
keyboard. Sinmilarly, a sinple nulti-part score may | ook like a
"program when it is entered by typing, but less |ike one when
created by real-tinme recording froma nusic keyboard.

What ever the application or user interface, the user data is

al ways a standard AMPLE program on which any of the Nucl eus
program mani pul ation facilities nay be used. Further, the
application's editors act on the program and are integrated
through the ability of one editor to edit a part of the program
that was entered with a different one.

program mani pul ati on conmands

The system holds a single programin the conputer's nmenory. The
foll owi ng AMPLE commands work on the program as a whol e:

AMPLE restart system (discardi ng program conmmand

NEW di scard program for entry of new program conmmand

MERGE nerge program conmand
nanest ri ng MERCE

SAVE save program conmand
string SAVE

LOAD | oad program conmand
nanestri ng LOAD

VWRI TE display text of all words conmand

WRI TE can al so be used to print the program

17

wor ds

The basic el ement of AVPLE is the word. Those words that are part
of the systemare called systemwords, and this type includes al
AMPLE conmands. Sone system words are provi ded by the Nucl eus —

t hese Nucl eus words are available in all installations of AMPLE
The rest are provided by the installation's nodules — they are
cal I ed nodul e words.

The other type of AMPLE word is the user word — the basic unit of
user progranms. User words have nanes |ike system words, but

they use lower-case letters throughout to avoid confusion wth
them Unlike systemwords, user words can be defined to carry out
a variety of functions — the definition of a user word is the
sequence of other words it perfornms when execut ed.

Each word is a separate object which can be created, used, edited
and, if necessary, deleted, independently of other words. The
user programis the conplete set of words considered as a whol e.

A user word definition my use any systemword that is not
'command only' as a programinstruction. Hence, it can carry out
a variety of tasks, fromactive conputation to sinple storage
such as for a piece of nusical material represented as a sequence
of rmusic instructions. Mst inportantly, any user word can al so
use any other user word as an instruction, so a program can be
constructed using words as buil ding-bl ocks. For exanple, a long
i nstruction sequence can be divided into sub-words, to be chained
together in a further definition. Further, the programis job can
be broken down in to unique tasks which are then defined as words,
for exanple, basic nusical naterial which plays nany tines in the
a conpl ete piece of nusic.

User words nmay al so be executed as commands, that is, by entering
their nanmes directly at the % pronpt. |In fact, the Nucl eus has no
RUN command si nce each program nay have many words that can be
"run', either as separate progranms or additional comrands or
options on a single program In practice, where the program does
one particular job, like play a piece, it should include a user
word with the nane RUN. Sone installations may provide a
"starter' RUN word for program devel opnent in sinple applications,
but all finished prograns should have a user RUN word.

18

wor d- mani pul ati on conmands

The foll owi ng words define a new user word, or redefine the
exi sting one of the sane nane:

[start word definition conmmand
namestring [...]
] end word definition [1 only

These words are used to define words at three |evels:

* direct text — [is used as a command to create a definition
by entering it as text directly at the keyboard

* editor text — an editor is used to prepare the text of the
definition, and to effectively enter it automatically when it
is conplete

* editor non-text — an editor is used to enter data in a
non-text formwhich is automatically translated to text for
the word definition. The reverse translation is carried out
when an existing definition is called up for editing.

The foll owing words are concerned with user word definitions:

SHOW show user words conmand

DELETE del ete user word conmand
nanmestri ng DELETE

TYPE type the word definition on the screen conmand
nanmestring TYPE

RENAME renane word conmand
ol dnanmestri ng newnanestri ng RENAMVE

FIND find uses of word conmand

namestring FI ND

user word formatting

Carriage returns (line separators) and spaces between instructions
may be used inside definitions to nake the text easier to read,
and comments — textual notes of your own which are ignored by the
system - nmay al so be included.

% i ntroduce conment

<carriage return> mark line end
<space> separate itens

19

menory usage

The following words are related to the use of nmenory space for the
program and other itens:

MEM show nenory usage in bytes

conmand
CDWPACT conpact unused menory conmmand
MODE enter display node conmmand
nunber MODE

20

4 NMbdul es and editors

Modul es are the RAM based extensions to the Nucleus that provide
those facilities that are specific to a particular installation
Each nodul e interfaces the Nucleus with one of the follow ng:

* hardware — drivers for peripheral units, including for
nmusi cal voices ('voice servers'), for nusical tinme ('tine
servers')

* user — editors, nenus, and other user interfaces and conmand
utilities

* program — predefined instrunents, nusic actions, progranmn ng
ext ensi ons, etc.

Each application's User Guide describes the nodul es included on
its systemdisc. This chapter gives a general description of the
nodul e system and introduces the Nucleus words that relate to it.

nodul e functi ons

Modul es provide the followi ng types of function in the system

* voice server — controls a rnusic peripheral to provide nusic
voi ces whi ch have a voi ce assignnent word and support the
standard set of voice controls (described in the chapter
"Musi c and sound').

* time server — controls the passage of nusical time by
supplying a tinebase signal to the Nucl eus, derived from
internal or external hardware (described in the chapter
"Musi c and sound').

* editor — provides an alternative user interface, usually to
all ow word definitions to be created and altered in a
particular form such as text, staff notation etc., but also
to provide a nmenu of command options (described bel ow).

* command utility — supplies additional comrands for special
applications such as advanced program and word mani pul ati on
The extra words are available at all tinmes when the nodule is
present and are used exactly |ike Nucl eus conmand words.

* extension — extends the vocabulary of words for use in

prograns, for special applications. The new words are
available at all times when the nodule is present, and they

21

are used exactly |ike Nucleus words. Exanples include
"preset' instrunents (for a particular voice type), graphics
drivers, and sone of the functions given above, particularly
Voi ce servers.

A nmodul e does not have to be only one of these, but usually each
functional unit is supplied as a single nodule.

exam ni ng nodul es

The foll owing words al |l ow nodul es to be exanmi ned:

MCAT di spl ay cat al ogue of nodul es conmmand
MSHOW show words in nodul e conmmand
nodnanest ri ng MSHOW

MCAT di spl ays the status of each nodule. The status affects the
operation of the other nodul e nanagenent conmands.

nodul e nanes

Each nodul e has a short upper-case nane, displayed by MCAT, and it
is stored on disc as a file with the sane nane. By convention
nodul es are stored under directory 'M (for exanple, the ful
filenanme of the nmodule INT would be MINT), and the !BOOT file
uses the following conmand to informthe Nucleus of this:

MPREFI X set nodule filenane prefix command
string MPREFI X

Every nodul e | oad operation adds the MPREFI X string to the start
of the nodule name to nake the fil enane.

The main fil ename of a nodul e nust not be changed, but the prefix
can be, provided the systemis informed through MPREFI X

A systemdisc often includes a drive specifier inits MPREFI X
string. This directs nodule |oads to a specific drive (usually

t he auto-boot drive, drive 0) so that the default drive selection
can be set for user programfiling.

22

| oadi ng nodul es

Modul es are | oaded by the foll owi ng comands:

I NSTALL install nodul e conmand
namestring | NSTALL

MLCAD | oad nodul e conmand
nanest ri ng MLOAD

LOAD | oad program conmand

nanestri ng LOAD

nodul e | oadi ng on start-up

VWen the [anguage is entered with the conmand *AMPLE, no nodul es
are present. In this state, AMPLE is entirely usable, but the
only words available are those of the Nucl eus.

A typical systemdisc starts the system by entering the | anguage
with *AMPLE, and then | oadi ng each nodule with the | NSTALL
conmand. Each nodul e becones a fixed part of the installation
and cannot be renmpved without restarting with *AVPLE

The set of | NSTALLed nodul es includes the follow ng kinds of nodul e:

* essential hardware drivers, such as voice and tine servers,
which will probably be needed in every session

* essential editors and nenus, such as a nmain menu which | oads
editors as required

Sone nodul es are inherently 'fixed only', so that they always
becone fixed on | oading, however they are | oaded.

The system di sc can be configured to | oad any nodul e on start-up
sinmply by adding an appropriate | NSTALL comand to the !BOOT file.
The user could, for exanple, INSTALL a conmmonly-used editor or
extension nodul e to save the extra nenory used by M.OADed nodul es.
To avoid disturbing an existing | NSTALLed nodul e they may require a
speci fic nenory range, additional nodul es should be | oaded after
the | ast existing nodule. Equally, the user could renove a nodul e
fromthe INSTALL sequence to save nenory, either because it was

not required at all, or was better |oaded when required.

23

nodul e | oadi ng by the user

Editor and conmand utility nodul es are often | oaded by the user
when required, and then del eted when finished with (simlar to
code 'overlays' in other systens). Loading is either direct, by
the user entering an MLOAD conmand, or indirect, through a nmenu
whi ch uses MLOAD internally.

In nost installations, a nmenu | ooks after such tenporary nodul e
loading. This '"main nenu' is itself provided by a nmodule which is
installed, so available at all tines. The nmenu provides a l|ist of
avail able editors and utilities, and records which one it |ast

| oaded. When the user nakes a selection, the menu carries out the
fol | owi ng:

* if the selected editor/utility is already present, it invokes
it, elseit:

* del etes the nodul e | ast | oaded

* | oads the selected nodul e

* enters the editor/utility

Note that the nodule is invoked w thout [oading if already present
for any reason, so the user can get faster access to a nodul e by

I NSTALLing it in the !BOOT file or first loading it nmanually with
M_.OAD

nodul e | oadi ng by the program

Each saved program contains a list of the nodules which it needs —
a programneeds a particular nodule if it uses any word fromit as
an instruction in a word definition. Wen a programis | oaded,
the LOAD conmand automatically M.OADs any needed nodul es that are
not already present. Wen the programis deleted by NEWor a
further |l oad, the program | oaded-nodul es are automatically

del eted. This powerful feature allows a programto use extension
nodul es wit hout the user having to be aware of it.

modul e del eti on

The foll owi ng words del ete nodul es:

MDELETE del ete nodul e comrand
nanmestri ng MDELETE

LOAD | oad program conmand

NEW di scard program conmand

AMPLE restart system conmand

24

readi ng nodul e word definitions

Sone nodul e word definitions may be read by the user, for exanple,
di splayed with TYPE or called in to an editor. Preset instrunent
nodul es are usually of this type, allowing the user to create a
nodi fied version of an instrunment as a user word definition

nodul e nenory usage

Modul es are held in a single block of menory along with the user
program (word definitions and public data) and free space, as
fol | ows:

program and
free space

| |
| |
| |
| |
| |
| novabl e |
| nodul es |
| |
| |
| |
| |
| |

fixed
nodul es

Both internal boundaries are novable. Mdules are |oaded fromthe
bottom up, and when a nodule is |oaded, the anmount of menory
avail able for the programis reduced accordingly.

Each nodule file consists of the nodul e proper, plus relocation
data which is needed to position the nodule in nmenory. Wen a
nodul e is | oaded by INSTALL at start-up (or a 'fixed-only' nodule
is | oaded by any nmeans), it is put in place and the now redundant
rel ocation data discarded to save nenory space. |Its MCAT status is
"F, for fixed.

When a nodule is later |oaded by MLOAD or LOAD, its relocation

data is retained, so it can be noved down when a previously-I| oaded
nodul e i s renoved, reclainmng space for use by the program An
exception is made for the first nodule, that is, the one inmediately
above the last INSTALLed nodule — Since it will never need to be
noved, its relocation data is always di scarded.

Points to note fromthis are:

* any nodul e can be I NSTALLed rather than M.QADed in order to

25

save nenory space
* the amount of user program nenory depends on the order in
whi ch two novabl e nodul es are | oaded
* all nodul es below a fixed nodule are also fixed — I NSTALL is
used only at start-up, and the 'fixed-only' property is
nerely a precaution to prevent renoval.

editors

The conmmon features of all AVMPLE editors are:

* an 'entry' word, usually the nane of the nodul e, which nakes
this editor the current editor

* an 'auxiliary dictionary' — a list of comrands that are only
avai | abl e when the editor is current (displayed by NMSHOW

* a 'tab' command (on the auxiliary dictionary), which enters
the editor's 'edit node'

There is only one current editor at any tine, so entering an
editor automatically exits the previous one. MCAT shows which
nodule is the current editor. Mny editors create special screen
di spl ays when entered, and clear themwhen exited. There is also
a Nucl eus comrand which exits the current editor by switching to a
"dumy' editor:

QU T Ileave editor command
The conmand AMPLE executes QUIT.

Entering an editor nmay | eave control back in conmand node, or in
the editor's edit node.

edi tor types

A typical editor offers the following facilities:

* a data area in which the data currently being edited is held
* an edit node in which the data is displayed and may be
edited. Pressing TAB returns to conmand node
* a conmand node with the follow ng additional comuands:
* the entry word, to enter the editor, leaving control in
conmand node (the % pronpt) or edit node
CLEAR to clear the data area
CET to get the contents of a nanmed word in to the data area
MAKE to define a word with the contents of the data area
NAME to set the nane of the word to be created by MAKE
"tab' to enter edit node

L I

26

(The tab command is a conmand |i ke any other, but because the %
pronpt ends the Iine on a TAB press, the conmand i s executed
i medi ately. The tab conmand does not show on the MSHOW di spl ay.)

Generally, editors may have nore or |ess conmand-node facilities
that these. |In particular, sinpler user interfaces |like nmenus are
sonetines provided as editors, but they nay have no nore than an
entry word and 'tab' conmmand — a very sinple edit node displays the
list of options and waits for a selection to be nade, and then
returns to comrand node as soon as the selection is executed.

edi tor data

Normal editors nanage their own data area, so their data is private
and cannot be accessed except by that editor. Advanced editors use
"public' data which can be accessed directly by other editors, and
is held as part of the user programso it is saved and | oaded al ong
with the word definitions.

Public data has a 'type' associated with it, displayed by the SHOW
conmand. The comonest type is text, displayed as 'T' .

Public data can be edited with any editor that recogni ses the type.
VWhen a public data editor is entered, the data is i mediately
available for editing if the type is conpatible, and it is cleared
if it is not conpatible.
The Nucl eus has a command that clears the data explicitly:

CLEAR clear editor data conmand

After CLEAR, SHOW i splays 'no data'. The type is set when data is
next provided by an editor or |oaded with LQOAD

A private data editor will often provide its own CLEAR conmmand
which is used in preference to the Nucl eus CLEAR

27

28

5 Musi ¢ and sound

I ntroducti on

AVPLE' s conpl ete nusic and sound system can be illustrated as
fol | ows:
| | nusic | music | sound | | | voice
| music | events | action | events | sound | | servers
| words | | chain | | event
| | tenpo | queue | _ | tine
| | events | | | server

The conponents of this system are now di scussed individually.

musi ¢ wor ds

AVPLE Music Notation is the textual nusic representation provided
for scoring of note-based nmusic. It is used both directly by the
user, and as a standard internal formby editors providing other
notation forns, such as staff notation

AVPLE Nucl eus supports AMPLE nusic notation by incorporating al
necessary nusic words as a self contained set, and providing a
standard interface between this and the voice and tinme control
syst ens.

The music words are of two types: nusic event words and mnusic
envi ronnent words. Muisic event words cause direct nusica
results, according to values set by the rnusic environnment words.

musi ¢ envi ronnent words
The foll owing words control the nusic environnent:

Lengt h: , set length
nunber ,
BAR set bar length
| engt hsnunmber BAR
| rmark end of bar

Pi t ch: . set octave
oct nunber

29

! nove an extra octave up or down

+ sharpen next note
- flatten next note
= naturalise next note
K(start key signature
)K end key signature

@ set transposition
transnunmber @

Voi ce: (start additional chord notes
) end additional chord notes
; set rmusic voice voi cenunber
Gat e: ~ slur next note
Level : =L set dynamic |evel
+L increase dynamc |evel
-L decrease dynamic | evel
The foll owi ng al so have an effect on the nusic environnent:

SCORE prepare for music words
READY ready system

The foll owi ng access the nusic environnent val ues for processing:
MVAL? read nusic variabl es
MVAL? -> franel ev keysig barcountlen octnote |ength tranvoice
MVAL! write nusic variables
franel ev keysig barcountlen octnote |length tranvoi ce MAL!

nmusi ¢ event words

Voi ce events: A - G play ascending note
a — g play descending note

X play hit

N play rest
A. play chord rest

/ hold notes, hits, and rests
\ npve back

(start additional chord notes
) end additional chord notes

30

(The chord words '(' and ')' are considered nusic environment
words froma notational point of view, but in fact they generate
sinmple nmusic events, so are strictly-speaking nmusic event words.)

Tenpo events: =T set tenpo
nunber =T

+T increase tenpo

-T decrease tenpo

music interpretation

The interpretation of nusic notation is the conversion of

hi gh-1evel nusic events such as 'note', 'rest' etc. into | owlevel
sound events having precise effects like '"set pitch’, and 'wait
for a period of tinme'.

AMPLE interprets the two types of nusic event words — voice and
tenpo — separately.

Each tenpo event word sinply generates its own type of tenpo
event, which includes a single variable value. This event passes
via the sound event queue to the tinme server where it takes effect
on the tinebase, the regular repeating pulse that marks the
overal | passage of nusical time. Al durations, including the

l engths of notes etc., work in tinmebase units, so the tinebase
controls the final duration of all notes and therefore the tenpo
of the nusic.

Al'l voice event words (note letters, etc.) generate a single type
of nmusic event with sone or all of the follow ng vari abl es:

voi ce voi ce sel ection

pitch pitch in senitones

"vel ' dynam c level, or 'key velocity

gate state: on (sounding) or off (silence)
duration period of tinme, in tinmebase units

Each nusic event is conpletely defined by the values of these five
variables. They are carried by sound events, via the sound event
gueue, to a voice, where they produce the sound of the origina
nmusi ¢ event.

The voice variable is given to the sound word VO CE, to select the
voi ce to which subsequent sound events will be directed. The
pitch, 'vel' and gate variables are given to PITCH VEL and GATE
respectively — standard sound words which all voice types have.
The duration variable is given to the sound word DURATI ON, which
adds a final tine interval through its effect on the sound event

31

gueue itself.

(I'n fact, the nusic event has three separate voice val ues for

PI TCH, VEL and GATE; not so that they can be sent to different
voi ces, but be individually excluded by a voice value of 0, if it
is not required in that nusic event.)

Notice that all nusic events, and notes in particular, are 'single
ended' — an initial group of sound events marks the start of a
note, a duration gives it length, but nothing marks the end of it
except the start of the next nusic event.

musi ¢ acti ons

AVPLE gi ves powerful control over mnusic event interpretation

t hrough the use of mnusic actions. A nusic action is a sequence of
instructions that is executed every time a nusic event is issued.
It can use any Nucl eus progranm ng words and access the nusic
event variables to nodify, transform augnent or replace the
standard interpretation. Misic action definitions are often

provi ded by extension nodul es, and nay be created by the user

t hrough the foll owi ng words:

ACT execute nusic action

ACT(start nusic action sequence [1 only
posi ti onnunber ACT(
)ACT end nusic action sequence [1 only

SI MPLEACT renove all nusic actions

The foll owi ng nunber processing words are used to access the nusic
event variables in nmusic action definitions:

FVAR access stack frane item
i termunber FVAR -> addr essnunber

VO CE! change voice settings in frame
voi cenunber VO CE or ON VA CE!

sound events

Information is carried fromthe user programto the | owl evel
nmusi ¢ peripheral driver software in the formof sound events. A
sound event is a sinple instruction to set the value of a
particul ar control on the receiver. There are four nmain types:

voi ce events

type- gl obal voice events

time control events (including tenpo events)
queue control events

* % F

32

Sound events are generated by sound words. The Nucl eus provides
gueue control sound words, and voice servers provide their own
voi ce sound words and type-gl obal voice sound words. Tenpo sound
events are generated only by tenpo nusic words, so no tenpo sound
words are provided.

t he sound queue

When a sound event is generated by the user program the system
does not execute it imediately, but stores it tenporarily on the
sound queue, a buffer in which the events are held in the order
they are to be executed, separated by durations. Durations are
continuously consunmed fromthe 'output' end of the queue under the
control of the tinebase, and as sound events are encountered, they
are renoved and executed. All operations carried out by sound
events are therefore synchronised to the tinebase. This advanced
nmechani sm provi des two i nportant benefits:

* sound execution is precisely tinmed, and i ndependent of
execution of the generating program

* sound events may be generated in an order independent of the
order in which they are to be executed.

The sound queue represents a segnent of the total duration of a
pi ece of music, storing all the sound events required to play in
that period. This segnent continually noves forward as passi ng
time consunes it at the 'real tine' (time present) end and the
programextends it at the 'programtinme' (tine future) end:

sound event sound event
execution gener ation
real tine programtine
passing tine -ve duration | +ve duration
_ <--|--->

sound events |

SRR total queue time --------- >

past | future far future
pr esent

Durations nove programtinme, and 'total queue tinme' is a neasure

of programtinme, relative to real tinme. The follow ng words
provi de these functions:

33

DURATION wait for a period of tine
nunber DURATI ON

QTIME return queue tine
QIl ME -> nunber

Two further words have direct effects on the sound queue:

READY get ready for players
GO start players together

Each player has its own independent programtime.

The system comand |ine interpreter resets player 0's queue
time before executing each Iine. See QIlME for details.

gueue control sound words

The foll owi ng words generate sound events which control queue
processing itself:

FAST select fast/normal tenpo
flag FAST

PAUSE pause/continue sound processing
fl ag PAUSE

time contro

AMPLE Nucl eus uses an external tinme server (supplied as a nodul e)
to provide the tinebase and thereby control the passage of nusica
time. This allows the nmethod of tine control to be changed to
suit the application. Most installations will include a tine
server providing a free-running, conputer-internal tinebase,
whereas others m ght accommpdat e external sources, such as for
synchroni sation with external equipnent.

Only one tine server is active at a tine, but nore than one tine
server nmodul e can be installed. To select between alternative
time servers, each one has a word, usually the sanme as its nane
and having no input or output values, which selects it and

desel ects the previously selected tine server.

The current tine server responds to tenpo control events generated
by the tenpo nusic words, and other time control events generated
by the follow ng:

W ND advance tine
ti cksnumber W ND

34

HALT halt/continue tinebase

voi ce sel ection

AVPLE Nucl eus can accomodate 132 voices, 12 in each of 11
"ensenbles'. In practice, the installation provides a smaller
nunmber of voices, but these can be individually assigned to any of
the 132 voice positions, allowing great flexibility in voice use.

A voice position is identified by the nunber of the ensenble and
t he nunber of the voice within the ensenble. |n nost cases, the
ensenbl e nunmber corresponds to the player nunber, because the
system sel ects the same-nunbered ensenble for each player on its
creation.

Each pl ayer has a voice selection which determn nes which voice or
voi ces its subsequent voice sound events affect. This selection
consi sts of the nunmber of the ensenble and the nunber of the voice
within the ensenble, and these are set using:

VO CE sel ect voice(s)
voi cenunber VA CE

SHARE sel ect voice ensenbl e
ensenbl enunber SHARE

When a player is created, it automatically has the sane-nunbered
ensenbl e sel ected, so ensenble 1 'belongs' to player 1, ensenble 2
to player 2, etc. SHARE can then be thought of as selecting (or
"sharing') the specified player's voices. Oten, each player
addresses only its own voices, and SHARE is not used.

Two further words set the 'range of voices' on the addressed
ensenbl e (not player). The conplete range can be sel ected by
VO CE so that each sound event is automatically sent to two or
nore voi ces.

VO CES set nunber of voices
nunmber VA CES

RVO CES set voices range
start nunmber endnunber RVA CES

35

VOoi ce assi gnnent

Each voi ce type has a voice assignment word which assigns a voice
of that type to the selected voice position or positions. Only
once a voice is assigned to a position can it receive further
sound events and hence be used.

The Nucl eus has a special 'unused' voice type, assigned by:

UNUSED make voice(s) unused

VOi ce events

Each voice type has a set of sound words that give access to the
voi ce controls, through sound voice events. They include basic
"perfornmance' controls like pitch and gate, and 'instrunent
controls that are designed for selecting or defining overal
characteristics. In principle, any control could be used for
performance or instrunent definition and many voice types do all ow
this, but some place restrictions on the use of certain controls,
particularly if their voices are on renote, rather than

i ntegrated, devices.

In addition to a voice assignnent word, all voice types have the
standard sound words required for default interpretation of AWMPLE
Nucl eus nusi c words:

PITCH set pitch in semitone units fromniddle C
pi t chnunber PI TCH

VEL set dynamic level in range 0 to 127
| evel nunber VEL

GATE set gate state, 'on' or 'off’
gat ef | ag GATE

The precise interpretati on of these varies between voice types and

event instrunent definitions on a single voice type, but the
overall effect is as defined by the words' descriptions.

36

t ype-gl obal voi ce events

These affect all voices of the same type together. The
correspondi ng sound words are specific to the voice type and are
not affected by the voice selection. Exanples include globa
tuni ng and vol une.

VOi ce servers

A voice server is a nodule that provides a voice type, and drives
a particular type of voice-providing nusic device. It provides
the sound words for its type and the | ow 1l evel routines that

i mpl ement | ogical voices in terns of the physical voices avail able
fromthe device.

37

38

6 Nunbers and fl ags

AMPLE supports 16-bit signed integers, that is, whole nunbers in
the range -32768 to 32767.

A literal nunmber is one that appears where its value is required,
and in AMPLE may be in decimal, negative decimal or hexadeci na
form

& i ndi cat e hexadeci mal numnber
- indicate negative nunber

arithnmetic expressions

AVPLE uses post-fix notation for all operations on nunbers. This
is a contrast to |languages like BASIC that use in-fix notation

In BASIC, arithnmetic expressions appear in mathematical style,

wi th each two-input operator appearing between its input val ues,
for exanple

2 +3 or 4 * (2 + 3)

Sub- expressions are bracketed to define the order of the
oper at ors.

In AMPLE, expressions work in conputer style, with nunbers and
operators appearing in the order in which they act, that is, with
the operator after its input values, for exanple:

2 3 #+ and 2 3 #+ 4 #*

(AHPLE uses '+' for a nusical function, so the arithmetic add
instruction is ' #+').

Because AMPLE executes the itens in strict left-to-right order
brackets are never required for sub-expressions. |In fact, because
nunbers and operators are executed step-by-step like any other
programinstructions, AMPLE expressions are nuch nore flexible and
often sinpler than their BASIC equival ents, even though they may
ook less famliar

The following arithmetic operators are avail abl e:

multiply two nunbers
nunber 1 nunber2 #* -> product nunber (nunberl x numnber 2)

39

#+ add two numnbers
nunber 1 nunber2 1+ -> summunber (nunberl + nunber 2)
#- subtract nunmber from previous nunber
nunber 1 nunber2 #- -> differencenunber (nunmberl — nunber?2)
#/ divide previous nunber by nunber
nunber1 nunber2 #/ -> quotient nunber renai nder nunber
#B12 swap high and | ow bytes of nunber
nunber 1 #B12 -> nunber?2

MAX | eave | arger of two nunbers
nunber 1l nunber2 -> | argernunber
M N |eave smaller of two nunbers
nunber 1 nunber2 -> small er nunber
A useful word for experinenting with expressions is:

NOUT print nunber in decimal
nunber NOUT

for exanpl e:

2 3 #+ NOUT prints 5
constants
A nuneric constant is an itemthat has a fixed nuneric value. In

AMPLE, this is sinply created as a word containing a literal, for
exanpl e:

"sem peroct" [12]

The nane of the word can then be used anywhere that a literal is
al l oned, for exanple, in an expression

3 seni peroct #+ is equivalent to 3 12 #+

Using a constant instead of a literal makes it sinple to change
the val ue once incorporated into a program especially if the
value is used in two or nore places. |t can also nmake the program
easy to read by describing its function, and in addition a conmrent
may be incl uded:

"sem peroct" [12 % nunber of sem tones per octave

]

40

t he nunber stack

AVPLE uses a structure called a stack to hold nunbers as it works
through an instruction sequence. This is effectively a pile to
which itens nmay be added and renoved at the top position only — a
last-in first-out buffer, or "LIFO. You don't have to know about
the stack to use nunbers and expressions, but it helps in
under st andi ng nore advanced uses.

A literal nunber sinply puts its value on the stack, for later use
by an operator. Each operator takes its input values fromthe top
of the stack, and |eaves its output value on the top of the stack
Sonme words, |ike NOUT, sinply consune a nunber, that is, they have
no out put.

A literal nunber may remain on the stack to be consuned by an
operator in another word, as illustrated by our definition of a
constant. A constant is an exanple of a word passing out a val ue:
one that has no input val ues and one output val ue.

The stack can be used for tenporary storage, since each nunber is
unaffected by the activity above it, for exanple:

1 % | eave on stack
2 3 #+ NOUT % prints 5
NCUT % prints 1

(Thi s sequence can only be executed fromwithin a word definition
since the systemw |l give the 'Extra nunber' error on finding the
unused '1'" at the end on the first line, and then the 'No nunber’
error on reachi ng NOUT.)
A sinple exanple of tenporary storage is

1 2 NOUT SP NOUT % prints 21
O course, the nunbers are reversed — last-in, first-out.
Not e that each player has its own nunber stack, so numnber

processing and storage is entirely independent for each player.
Each nunber stack can hold 31 nunbers.

41

passi ng nunbers

Since the stack lets nunbers be freely passed in and out of word
definitions, an expression can be put into a word definition, and
then receive a value fromoutside, for exanple:

"printsem " [12 #* NOUT]
2 printsem

is equivalent to

2 12 #* NOUT

and prints 24
This structure is the equivalent of a procedure in other
| anguages: a naned sequence of instructions supplied wth input
val ues each tinme it is called.
It is conventional to indicate the nunber of input val ues
required, with a comment inside the word, particularly since this
information is not necessarily obvious fromthe formof the
definition. The coment shows the form of use of the word, in the
style used in this Guide, for exanple:

"printsem " [% octnunber printsemi

A function is sinply a procedure with one output value, such as:
"tosem " [% octnunber tosem -> sem nunber
12 #*]
2 tosem NOUT
is equivalent to

2 12 #* NOUT

An AMPLE function may have nore than one output value. The divide
operator, #/ , is an exanple:

#/ divide previous nunber by nunber
nunber 1 nunber2 #/ -> quotientnunber renai nder nunber

42

The i nput/out put description tells us that

7 3 #l is equivalent to 21
SO0

7 3 #/ NOUT SP NOUT prints 21
as does

1 2 NOUT SP NOUT

It should be clear to you that, in AMPLE, literals, constants,
operators, procedures and functions are all just variations on a
sinple thenme, and they can be created as sinple word definitions
wi thout any 'red tape'. You nay al so have noticed that there is
no need for any sort of statement separator, since execution

al ways progresses logically through the instructions as they
appear. However, you can nmeke the programclearer to read by
 ayi ng out groups of instructions on separate lines, or with extra
spaces i n-between.

stack operators

The stack operators allow you to take special advantage of the
stack's storage abilities by duplicating, discarding and rearrangi ng
t he top nunbers.

#11 duplicate nunber
nunber #11 -> nunber nunber
#12 swap two nunbers
nunber 2 nunberl #12 -> nunberl nunber?2
#2 di scard nunber
nunber #2
#212 duplicate previous numnber
nunber 2 nunberl #212 -> nunber2 nunber1l nunber?2
#2121 duplicate nunber and previ ous numnber
nunber 2 nunberl #2121 -> nunber 2 nunber1l nunber 2 nunber 1
#213 rotate positions of three nunbers
nunber 3 nunber 2 nunber1 #213 -> nunber2 nunberl1l nunber3

43

The nanes of these words directly describe their net effects on
the foll owi ng hypothetical stack

987654321
For exanpl e:

987654
987654

w w

2 1 #11 produces
211

and

98765 #213 pr oduces
98765

B

A further set of words allow access to nunbers at specifiable
positions, or frames, on the stack, independent of the nunber of
items above:

FCOPY copy nunbers from frane
nunber FCOPY

FRAME mark top of stack frane
FRAME! set frane pointer

poi nt er nunmber FRAME
FRAME? read frane pointer

FRAME? -> poi nt er nunber
FVAR access stack frame item

i termunber FVAR - > addr essnunber
VO CE! change voice settings in frame

voi cenunber VO CE or ON VO CE!

flags

A flag is a logical value: one that is either ON or OFF. AMPLE
represents flags as nunmbers, with 0 standing for OFF and -1 for
ON. Flags and nunbers are equivalent as far as the systemis
concerned, so all words described as nunber operators can equally
be used on fl ags.

The foll owi ng words produce flag results:
OFF leave false flag
OFF -> offfl ag
ON leave true flag
ON -> onfl ag

#< test previous nunber is |less than nunber
nunber 1 nunber2 #< -> flag (nunberl < nunber?2)

44

#= test nunbers are equal
nunber 1 nunber2 #= -> flag (nunmberl = nunber2)
#> test previous nunber is greater than nunber
nunber 1 nunber2 #> -> flag (nunberl > nunber2)

SIGN test nunber is negative nunber
SIGN -> flag

flag operators

The following flag operators work on individual binary bits of the
nunbers, and they can be used either on flags as | ogical
connectives, or on nunbers as 'bit-wi se' operators.

AND AND bits of nunbers

nunmber 1 nunber2 AND -> ANDnunber (nunberl AND nunber 2)
OR OR bits of nunbers

nunmber 1 nunmber2 OR -> CRnunber (nunberl OR nunber 2)
XOR exclusive-OR bits of nunbers

nunmber 1 nunber2 XOR -> nunber 3

NOT is a strict |ogical connective, neaning that it does not operate
bit-wise.

NOT invert sense of flag
flagl NOT -> flag2

vari abl es and storage

As you may expect, variables and arrays are al so defined as sinple
wor ds.

GVAR create variable [1 only
GVAR - > addr essnunber

DIM reserve nenory

ARRAY access array el ement
el ement nunmber baseaddr essnunmber ARRAY -> addr essnunber

A variable or nmenory block is defined Iike any other word, using
the appropriate instruction inside the definition, for exanple:

Vari abl e: "total" [GVAR]
Array: "totals" [100 DI M ARRAY]

The storage space for the variable is provided by the GVAR

instruction itself, but the DIMspace is clainmed froml anguage
nmenory, and is accounted for in the 'Arrays' entry of SHON DM

45

may be used wi thout the ARRAY add-on to reserve a sinple block of
menory for direct access by the program for exanple

"buffer” [100 DIM]

O her itenms, such as conments, additional actions, debugging aids
etc. can also be included in any of these definitions.

GVAR and DI M definitions return absol ute nenory addresses for the
use of the followi ng store and fetch operators:

#! store nunber at address
dat anunmber addr essnunber #!

#? fetch nunber from address
addr essnunber #? -> dat anunber

#+! add nunmber to nunber at address
dat anunmber addr essnunber #+!

#B! store |ow byte of nunber at address
dat anunber addressnunber #BI!

#B? fetch byte from address
addr essnunber #B? -> dat anunber

These are suitable for flags as well as nunbers.

From the point of view of a BASIC progranmer, #! is the post-fix

equi val ent of the assignment operator '=

BASI C total =1
AMPLE: 1 total #!

In an expression (for exanple, at a position to the right of a
BASIC '="), each variable is followed by #? to 'fetch' its val ue,
for exanpl e:

BASI C. t ot al =i nput
AMPLE: i nput #7? total #!

Because AMPLE is not restricted to formal 'statenents', operations
can often be carried out with fewer instructions than in BASIC,
for exanpl e:

BASI C. t =x: x=y:y=t :REM swap x and y
AVPLE: X #?2 y #?2 x #! y # % swap x and y

46

random nunber s

The foll owing words control AMPLE s built-in random nunber
generat or:

RAND get random numnber
RAND - > nunber

RAND! set starting point for random nunbers
nurmber RAND!

RANDL get random nunber in range
maxnumnber RANDL -> nunber

47

48

7 Characters and strings

Single characters may be are represented as nunbers, for exanple,
aletter by its ASCI| code. Hence, the nunber stack and nunber
operators may be used for processing single characters.

Strings are supported as a separate type, using a single string
stack similar in operation to the nunber stack. A string is a
sequence of up to 128 characters, including all 8-bit values. The
foll owing words convert between a character on the nunber stack
and a one-character string on the string stack

ASC convert string to nunber [1 only
string ASC -> asciinunber
$CHR convert nunber to string [1 only

asci i nunber $CHR -> string
The nunber value -1 represents a null string/character

Literal strings may be included in the program by encl osing them
with " characters, for exanple:

"hel | 0"

start literal string
"characters" -> string (when inside [...] : see later)

A " character may be included in the string by repeating it.

string operators

The following string operators are provided:

$+ add string to left end of previous string [1 only
rightstring leftstring $+ -> string (left + right)
$- split string after nunbered character [1 only
string nunber $- -> rightstring leftstring
$PAD pad string with spaces [1 only
stringl | engt hnunber $PAD -> string2
$REV reverse the order of characters [1 only
string $REV -> reversedstring
$STRIP renove | eadi ng spaces [1 only

stringl $STRIP -> string2

LEN get length of string [1 only

49

string LEN -> string | engt hnunber
The string stack operators are:

$12 swap two strings [T only
stringl string2 $12 -> string2 stringl
$2 discard string [] only
string $2

Conver si on between nunber and string formis provided by the
fol | owi ng:

$STR convert nunber to decinal string representation [] only
nunmber $STR -> string

&BSTR convert nunber to hex string representation [] only
nunber &$STR -> string

VAL convert string to unsigned deci mal nunber [1 only
string VAL -> renainingstring nunmber ON if found
string VAL -> renainingstring OFF if not found

&AL convert to unsigned hex numnber [1 only
string VAL -> renainingstring nunmber ON if found
string VAL -> renainingstring OFF if not found

string stack usage

As an exanpl e of normal usage, a word can sinply leave a string
with "..." and then print it out inmmediately:

"speak" ["hello" $0UT]
speak % prints hell o

Equally, it could |eave a string to be picked up by anot her word:

"it" ["hello"] "say" [$QUT NL]
"speak" [it say]
speak % prints hello

Whereas you nmay pass a string frominstruction to instruction in a
definition as this exanple shows, you nay not pass a string from
conmand to command, that is, along the conmand line. This is
because the command input line is itself held, by the system as a
string on the string stack. For exanple, if in the above exanple,
"it say' was entered as a conmand sequence, the data string would
interfere with the input |ine, producing an error

speak % prints hell o
it say %fails with '! M stake'

Renenber, there is no restriction in normal string stack usage

50

i nside word definitions, that is, usage in which any word executed
fromthe command |ine preserves the state of the string stack

using strings at the command |ine

Because the comand input line is itself a string on the stack

has a different action when outside [...], and many string
operators are restricted to use inside [...].
VWhereas "..." puts the string on the top of the stack when inside

[...], when entered in the command line, it puts the string as the
second itemdown, that is, underneath the input line string. So,
the conplete stack action of a literal string (the word ") is
actual | y:

"characters" -> string inside [...]
i nputstring "characters” -> string2 inputstring outside [...]

System commands that take strings (SAVE for exanple) take them
frombelow the input line string with $12, leaving the input line
string undisturbed as the top item

User words can accept direct-node strings in the same way, for
exanpl e:

"say" [$12 % get direct-nmode string fromunder input line
$QUT]
"hel |l 0" say % prints hell o

User words can deliver direct-nmode strings also by using $12, for
exanpl e:

"name" ["prograni $12]
name SAVE % equi valent to "program SAVE

using the input line

As the systems command interpreter works along the input line
string, it finds the next word nane, renoves it, and executes the
word. The last word on the line is either carriage return or TAB
(carriage return does absolutely nothing unless inside [...]).
When the input string is entirely consuned, that is, reduced to
""" the systemprints the % pronpt and waits for the next command
line to be entered. At the point of executing any word on the
line, the input line string is the remainder of the original |ine,
that is, the part of the line to the right of the word being
executed. Certain systemwords |ike & and % access the input |ine
directly to performtheir functions, and user words can do the

51

same for special purposes.

By adding to the input line string, a user word can issue
comands, for exanple:

"memshow' ["MEM SHOW $+]
nmenshow % equi valent to MEM SHOW

VWhen ' menshow starts executing, the top (and only) string on the
stack is the remainder of the input line; in this case, a single
carriage return. ‘'nmenshow adds MEM SHOW to the start of the
string, and then finishes. Control returns to the conmand
interpreter which finds the string MEM SHOMCR> as the remaining
input line, and processes it exactly as if it had been entered
directly by the user.

Conmmands such as this that substitute the name or nanmes of other
conmands to achieve their functions are called 'macro’ conmands or
just 'macros'. This exanple is a sinple nacro that produces the
same output string every tine. Conputed nmacros are nore advanced,
produci ng an out put dependant on input val ues, variables, user

i nput etc. An exanple of a conputed nmacro is a user nmenu nade

wi th nenu construction words supplied in nost installations — when
the nane of the nenu word is entered as a command, it replaces
itself by a command sequence that is selected by the user

A command word can access itens following it on the input |ine by
sinmply examining the input line string, and nodifying it if
required. A very sinple exanple is:

"say" [$SOUT ""] % print remaining line, and replace by ""
say fred % prints fred

'say' consunes the whole of the renaining input |ine, including
the final carriage return, and replaces it by "" (it does not need
to replace the carriage return).

The foll owi ng exanpl e decodes a nunber fromthe input line —it is
a BASI C-style MODE command which is used with the nunber after it
e.g. node 7.

"nmode" [

$STRI P % renove | eadi ng spaces

VAL % get nunber frominput |ine

#2 % di scard VAL flag (ON i f nunber found)
MODE]

node 7 MEM % change to node 7, and do MEM

If no followi ng nunmber is found, 'node' takes a nunber fromthe
stack anyway, so in fact the command can be used either way

52

around: nmode 7 or 7 node

It is inportant to renenber that a user-defined comrand word

al ways acts as a comand word, working on the current input |ine.
If you use a comand word inside [...], then the defined word is
al so a conmmand word. For exanple, you can define a new comand as
fol |l ows:

"nmodecat" [node "CAT"OSCLI]
nodecat 7 % gi ve node 7 catal ogue displ ay

What you cannot do is include the conplete conmand as an
instruction inside a word definition, for exanple:

"teletext" [node 7]

Entering 'teletext' will not have the same effect as entering
'nmode 7'.

using strings in players

The single string stack is common to the whole system that is, it
is shared by all players, so when two or nore players want to use
the string stack independently, a sinple restriction applies.

(" Two or nore' includes the static player).

Basi cally, only one player can | eave strings on the string stack
permanently — all other players nmust preserve the state of the

string stack over player control transfer points. These points,
called 'idle' points, are present at any instruction fromwhich
control may not imediately return to the player. They include:

| DLE

#IN, $IN

A-G a-g, X, /, ™, (,) (all nusic events)
ACT, DURATION, HALT, FAST, ON PAUSE

+T, -T, =T

(

sound words (PITCH, GATE etc)

Where a dynamic player runs alongside the static player's conmand
interpreter, it should always preserve the string stack state,
since the command interpreter uses the string stack to hold the

i nput 1ine.

53

string stack capacity

The string stack has a total capacities of 128 characters and 16
strings.

The character capacity available in a word definition is reduced
by the nunmber of characters remaining on the conmand input |ine,
so an otherw se successful definition could fail if executed from
the start of a longer conmand |ine.

Prograns that nmake heavy use of the string stack nay guard agai nst
this by discarding the input line on entry, and replacing it by a
null string on exit:

"RUN' [$2 %discard input line
C % run program
"] % | eave null input line

This also nmakes all of the stack's 16 string positions available to
t he program

54

8 I nput and out put

AMPLE Nucl eus provides a variety of words for QAERTY keyboard

i nput and screen output via the standard operating system
interfaces. 1In addition, the user nmay access operating system
i nput and output routines directly, for special applications.

nunber s

Wirds for nunber output are al so provided:

NOUT print nunber in decinal
nunber NOUT

&NQUT print nunber in hexadeci ma
nunber &NOUT

characters and strings

The foll owi ng words handl e character input and output:

#IN wait for and get keypress
#I N -> asci i nunber
KEY test key status or get keypress
negati venunber QKEY -> flag
zeronunber KEY -> asci i nunber
#OUT send ASCI|I code to screen
nunber #OUT

String i nput and output are provided by:

$IN input line fromkeyboard [1 only
$IN -> string

$QUT print string [1 only
string $OUT

Nurber input can be inplemented with string input and VAL/ &AL for
string-to-nunber conversion. See VAL and &VAL for exanpl es.

The foll owi ng provide special output to the screen
ALI GN ensure text cursor is at start of line
MODE enter display node conmmand

nunber MODE
NL print new line

55

SP print a space

systemeffects

AMPLE automatically sets various keyboard and screen options when
termnal -style line input is called for. The follow ng settings
are made by $IN and the conmmand |ine before accepting input:

*FEX255, 1 % make function keys expand

*FX4, 0 % engage cursor editing node

OSWRCH 231 00000O00O0 % turn cursor on
conmands

A conmmand may be output for execution by the operating system by:

OSCLI send string to operating system [T only
string OSCLI

addi tional interfaces

The user nay need to call operating systeminput/output routines
that are not supported through Nucl eus words, particularly for
secondary devi ces such as the anal ogue ports and serial link. See
t he chapter 'Machi ne-code progranm ng' for details.

musi ¢ and sound event i nput

Modul es provide nusic and sound input where required, through

* input words — values are returned to the user programin the
same way as with #l N and QKEY for QAERTY keyboard i nput

* music events — a nusic input device, such as nusic keyboard,
generates events as a transparent side process of keyboard
i nput — see the word ACT for general details.

synchroni sation

Because sound output is via the sound event queue and referenced
to the tinebase, it is delayed relative to non-sound output, and
i nput appears delayed relative to it. The user program may
synchroni se non-sound output to sound output by aligning it with
real tine, and synchronise the sound output to input, again by
aligning it with real time. See the word QTlI ME for details.

56

9 Execution contr ol

AVPLE provi des powerful facilities to control the path of
execution through the program

* word definition — the word contents are executed wherever its
name i s used in the program

* conditional — the instruction sequence is or is not executed
dependi ng on the outcone of a decision

* definite loop — the sequence is repeated a definite nunber of
times, determined in advance by a cal cul ated val ue

* indefinite loop — the sequence is repeated until a certain
out come of a deci sion

* concurrent — the sequence i s executed al ongsi de ot her
sequences, using the specified player.

The word definition is described in the chapter 'Progranms and
wor ds' .

control structures

Each of AMPLE s execution control structures consists of two words
used as a pair, and in sone cases an optional word for use in
between the main two. The first word of the pair ends with ' (' and
the second starts with '")', to make clear that they are

conpl enmentary parts of a structure, for exanple:

IF(...)IF ...

Optional structure words have brackets at the start and end of
their nanmes, for exanple:

IF(...)ELSE(...)IF ...
Each control structure word may only be used as part of the ful

structure, and this nust be in a single word definition. For
exanpl e, the followi ng are not allowed:

"myif" [TF(] ooonyif LoD)IFE L
"start" [... IF(C ...] "end" [...)IF ...)
start ... end ...

57

Control structures may be nested:

IF(... FOR(...)FOR ...)IF ... % al | owed
but they may not overl ap

IF(... FOR(...)IF ...)FOR ... % NOT al | owed

Al control structure words are '[] only', neaning that they can
only be used in word definitions, and not in the conmand |i ne.

conditional s and | oops

Sinpl e conditional execution is provided by the IF structure:

IF(start conditional sequence [T only

flag IF(...)IF or flag IF(...)ELSE(...)IF
)ELSE(separate conditional sections [T only
)IF end condi tional [1 only

A sinple FOR [oop structure handl es definite | oops

FOR(start definite | oop [1 only
count nunber FOR(...)FOR

JFOR end definite | oop [1 only

INDEX return | oop index [1 only
| NDEX - > nunber

COUNT return | oop count [1 only
COUNT -> nunber

The REPEAT structure allows a wide variety of indeterm nate | oops:

REP(start indefinite loop [] only
JREP end indefinite | oop [1 only
JUNTIL(exit fromindefinite loop [] only

condi ti on expressions

The actions of IF(and)UNTIL(are controlled by a flag input
value: ON or OFF. This is usually the result of an expression
usi ng one or nore of the followi ng operators:

#< test previous nunber is |less than nunber

nunber 1 nunber2 #< -> flag (nunberl < nunber?2)

test nunbers are equa

nunber 1 nunber2 #= -> flag (nunmberl = nunber 2)

#> test previous nunber is greater than nunber
nunber 1 nunber2 #> -> flag (nunberl > nunber2)

#

58

SIGN test nunber is negative
nunber SIGN -> fl ag

AND AND bits of nunbers

nunmber 1 nunber2 AND -> ANDnunber (nunberl1l AND nunber 2)
OR OR bits of nunbers

nunmber 1 nunmber2 OR -> CRnunber (nunberl OR nunber 2)
XOR exclusive-OR bits of nunbers

nunmber 1 nunber2 XOR -> nunber3

NOT invert sense of flag
flagl NOT -> flag2

Q her nunber operators nmay al so be used in the expression.

concurrency

AMPLE uses players to execute instruction sequences concurrently,
that is, alongside each other as opposed to one after the other.
In many respects, each player is |like a separate AVPLE conputer:
it can run its own instruction sequence, has its own rnusic

envi ronnent, nunber stack and voices etc. However, all players
have access to the same word definitions and gl obal data, and can
communi cate with each ot her.

Pl ayer number O is special. It executes the systenis comand
interpreter in an infinite | oop, accepting and executing input
fromthe user. Comands, editors and any user words executed by
entering their nanes as commands are said to be run '"in player 0'.
At this level of use, the systemlooks simlar to other

i nteractive mcro-conputer |anguages, like BASIC. |In particular,
the systemis either waiting for conmand i nput OR executing a
program but never doing both at the sane tine.

Concurrency is achieved by using players 1 to 10. Each of these
isidle until it receives an instruction sequence to carry out,
and when it finishes this, it becones idle again. Any player nay
i ssue a sequence to any player, including itself.

Pl ayers 1-10 are commonly used to run the parallel parts of a

nmusi cal piece. The programoften consists of 'part words' - the
definitions of the nusical parts — and a nain word (usually called
RUN) that sinply gives each player its part to perform RUNis
entered as a conmand in player 0: it starts the players and then
finishes, returning to the % pronpt while the piece plays.

59

pl ayer-control instructions

The foll owing words assign instruction sequences to players for
concurrent execution:

P(start concurrent sequence [1 only
pl ayernunber P(...)P
)P end concurrent sequence [] only
They are used al ong wth:

READY get ready for players
GO start all players

O her words connected with the use of players are:
| DLE pass control to other players

PNUM | eave pl ayer nunber
PNUM - > nunber

st oppi ng execution

AMPLE has a word to stop execution of all players and return
control to the % pronpt:

STOP stop program

AVPLE has no equivalent to BASIC s general GOTO statenent.

60

10 Machi ne—code programm ng

AMPLE user prograns can call operating system and user nachi ne-
code routines, and acconmpbdate user routines in existing unused or
speci al | y-reserved nenory.

calling routines

A single word all ows an operating system or user machi ne-code
routine, termnated by RTS, to be called froman AMPLE program
passi ng and receiving values via the processor registers:

CODE call machi ne-code routine
YXnunber CAnunber addressnumber CODE -> YXnunber PAnunber

User routines called in this way are free to call operating system
routines as nornal

User nachi ne-code routines may al so be called directly by the
operating systemthrough the CS vector system as nornal

Routi nes should take care to follow the correct procedure so that
AMPLE Nucl eus and nodul e vector intercepts are not disturbed. In
particul ar, they should preserve all registers and exit by junping
to the vector's previous contents, that is, the address that was
in the vector location before re-direction to the user routine.

user routine applications

The rel ationship of the various conponents of an AMPLE system
i ncl udi ng user routines, can be illustrated as foll ows:

User program AVPLE user words

| | user mc
| AVPLE Nucl eus | routines
L

|
| |
AMPLE nodul es | BBC Mcro CS |
| |

Application

Qperating system

nmusi c BBC M cro hardware

|

Har dwar e |
peri pheral s | and peripherals

|

61

(Each conponent can use only the facilities of the conmponents
which are inmedi ately belowit.)

Not e that user routines can be accessed by AVPLE user words and
the operating system and can access the operating system and BBC
M cro hardware and peripherals. In particular, user routines
cannot call any sort of AWMPLE word or access the mnusic hardware
directly. This puts themon a level with the application and
operating system (though they are physically part of the user
program) and in fact the jobs for which user routines are nost
used can be thought of as extensions to AMPLE or the operating
system

Generally, there are two reasons for using a nmachi ne-code routine
rat her than an equival ent AMPLE definition

* speed — where a conputation needs to be carried out quickly,
and a machi ne-code routine to do it is significantly faster
than the AVMPLE user word definition. Mst AMPLE Nucl eus
words run at nachi ne-code speed anyway, so there is little to
be gai ned by replacing themor user definitions which use
themintensively. The biggest speed increases will arise
fromreplacing user word definitions which use many sinple
Nucl eus words. The routine is accessed via a user word
containing the CODE instruction, rather than a separate CODE
at each use.

* vector interception — only nachi ne-code routines can be
call ed by operating systemvectors.

Conmon applications include:

* conputation — an AMPLE user word prepares the input data,
calls the routine with CODE, and fornmats the output data
The conpl ete user word is used as a formally-defined
extension to the Nucl eus.

* input — an additional hardware device can be handled by a
nmachi ne-code routine that reports the results to the AMPLE
user program A sinple nmethod polls or scans the device
usi ng a nmachi ne-code routine (called by the user progran) for
speed, and anot her uses a vector intercept routine to poll at
regular intervals, or respond to an interrupt, answering via
a variable that is scanned by the user program Any word
that waits for an external event nay use IDLE to avoid
hol di ng-up ot her players:

| DLE pass control to other players

62

* out put — hi gh-speed output to new or existing devices can be
provi ded, for exanple, for a graphics display using data
conputed and sent direct to the OS vdu drivers. User
routines are called direct by the user programrather than by
AMPLE s tinme control system so their output is not
automatically synchronised with normal music output. See the
word QTI ME for a method of synchroni sing user output.

user routines in | anguage RAM

Al'l |anguage RAM from OSHWM (OSBYTE &83) to the bottom of display
nmenory (COSBYTE &84) is reserved for use by the AWPLE system so is
not directly available for user routines. However, nenory may be
set aside using the DIMinstruction, and nachi ne code | oaded into
it using OSCLI, for exanple:

"codespace" [255 DIM] %reserves 256 words, i.e. 512 bytes

READY % clear all reserved nmenory

codespace % reserve space

$&STR % convert to string in hex

"LOAD code" $+ % make up command string: LOAD code addr
OSCLI % execut e | oad conmand

codespace % later, find start address of code for use

It is inportant to renenber that the address of the code space is
conpl etely variable, and nay change on each run of the program
For this reason, the user machi ne code nust either be

| ocati on-i ndependent, or be relocated to the | oad address each
tinme it is |oaded. Al so, renenber that READY clears all reserved
nmenory, so the nachine code nust be rel oaded after each use of
READY.

user routines in operating system RAM

Operating system RAM t hat nmay be used for user routines includes
unused prinmary workspace (for exanple, &BO0O to &AFF under many
conditions), and unused secondary workspace (between primry OSHW
(OSBYTE &B3) and current OSHWM (OSBYTE &83/ &B4)).

The armount of secondary workspace may be increased to include the
requi renents of user routines by a user programthat raises the
val ue of secondary (current) OSHWM before the *AMPLE conmand of
the AMPLE start-up sequence. (This reduces the anount of |anguage
RAM avail abl e to AVPLE accordingly.) A BBC BASIC programto do

63

this is as foll ows:

10 usersi ze=&200: REM anmount required (a full nunber of pages)
20 osbyt e=&FFF4: osbOSHWE&B4

30 :

40 A% 0sbCOSHWM

50 Y%&FF: X%=0

60 oshwm=USRosbyt e

70

80 Y%0: X% (usersi ze+poshwm) DI V &100

90 dummy=USRosbyt e

This program woul d be | oaded and run inmedi ately before the *AWMPLE
command in the systemdisc's standard start-up EXEC file. The
program coul d be extended to set the anmount of nenmory required to
suit an existing user nachi ne-code program and then load it to
the ol d value of OSHWM (variable 'oshwni), relocating internal
addresses if necessary. Alternatively, the programcould assenble
the user routines there and then, in place. It could also pass
the (variable) entry addresses of the routines to the calling
AVPLE program — see 'locating user routines' |ater.

An alternative nmethod of allocating RAMis through use of a
si deways ROM that clains private workspace through the nornal
nmechani sm on operating systemstart-up.

user routines in ROM

Routines in sideways ROM may be called from AMPLE, provided the
standard operating system procedure for ROM sel ection is followed.
Thi s makes use of the ROM sel ect register at &E30, the ROM sel ect
regi ster soft copy at &F4, a tenporary location for storage of the
AMPLE ROM nunber, and the nunber of the ROM containing the user
routine. A typical BBC BASIC assenbl er program skeleton to this
is as follows:

rsregi ster = &FE30 \ define synbols
rsregi stercopy = &4

.anmpl erommo EQUB 0 \ define workspace
.userromo EQUB O

STA userronmmo \ record user ROM nunber provided,
\ for exanple, on ROMinitialisation service call

.callroutine
\ select user rom

LDA rsregi stercopy \ get the current ROM nunber
STA anpl er ommo \ save for later restoration

64

LDA userromo \ get userrommo

STA rsregi stercopy \ store in copy FIRST..

STA rsregister \ then store in register

\ call user routine

JMP routine \ enter user routine, in ROM
\ reselect AMPLE ROM

LDA anpl erom \ get original rom nunber
STA rsregi stercopy \ store in copy FIRST..

STA rsregister \ then store in register

\ return

RTS

| ocati ng user routines

The entry address of the user routine, whether in RAM or ROM nust
be known to the AMPLE programfor it to be called using CODE.
VWhere the routine is not in AVPLE reserved nmenory, but in
operating system RAM or sideways ROM sone neans is needed to
autonmatically pass the entry address to the program since if it
was included as an absolute literal nunber, it would have to be
changed by hand to suit each new | ocation of the user routine.

One nethod is to hold the routine entry address at a fixed address
fromwhich the AMPLE programreads it. For a RAMroutine, this
could be in primary operating systemworkspace and be witten to
by the code | oader program For a ROMroutine, it could be at a
fixed address near the start of the ROM and the entry address
witten to it at assenbly time. Wiere two or nore entry addresses
are needed, they can sinply be stored at successive addresses.

user routines' zero page wor kspace

AMPLE | eaves | ocations &E and &BF free for use by user routines.

conmuni cation wth user routines

User routines do not have access to any part of the AMPLE

wor kspace or user program so passing of val ues between AMPLE
program and routine is acconplished by CODE s regi ster val ue
transferral and/or a special mechanisminplenmented by the user

One such nechani smuses a bl ock of nenory to which both the
program and routine have access. This could be either at a fixed
address in operating system workspace, at a fixed offset fromthe
routine entry address, or reserved by the AVMPLE programw th DI M
In the last case, the program passes the address to the routine in
the Y and X registers each tine it is called. The program and

65

routi ne agree the use of the locations at fixed offsets fromthe
start of the bl ock.

66

11 Errors

An error is a condition arising when the systemdetects that it is
unable to do what user input demands of it. This is usually
caused by a fault in a programor conmand. Errors nay be detected
by AVPLE or the operating system (including the filing system
etc.), but are treated in the same way whatever the source

error effects

Al errors give an error nessage, an explanatory single-line

nessage beginning with !'. There are three types:
description exanpl e
sinmpl e I M stake
with [ocation I' No nunber in tune
with [ocation and player I Bad bar in pagel in player 1

I ndi vi dual error nessages are explained |ater on

Dependi ng on how and where the error occurred, its effect may
i ncl ude:

* returning to conmand node, if the user was in an edit node

* stoppi ng execution of the conmand |ine, so remai ning comuands
are ignored

* stoppi ng execution of the word executed at the command |ine,
and returning to the % pronpt

* if it occurred in the definition of a word (inside [...]),
printing an additional '!' to indicate the site of an error
and aborting the definition.

* stoppi ng execution of players 1-10

* silencing all sounds

* executing a SCORE in player O if a chord or key signature was
in progress in player 0. This ends the chord or key

signature, and restores the nusic environnent to a defined
state.

67

In particular, the effects of each class of error are as foll ows:

* in the command line, or in an AMPLE word in the comand |i ne:
a sinple error nessage is printed
the rest of the conmand |ine is ignored.

*

*

the conmand line, while defining a word (inside []):

a'!" is printed under the error site

a sinple error nessage is printed

the definition is aborted and the rest of the Iine ignored

P

a user word in player O:

an error nessage with location is printed
execution in player 0 stops and returns to the %
the rest of the conmand line is ignored

SCORE is executed if necessary.

* ok ok * 3

one of players 1-10:

an error nmessage with |ocation and player is printed
execution of player O stops and returns to the %
the rest of the conmand line is ignored

SCORE is executed if necessary

pl ayers 1-10 are stopped

all sounds are silenced

HALT and PAUSE states are set to 'off'.

0% X 3k X F X T

Al effects apart fromthe nessage printing are exactly as
i f STOP had been executed.

An ESCAPE key press has the sanme effect as an error in one of
pl ayers 1-10, but a sinple error nessage is printed, wthout
| ocati on or player numnber.

error effects from nodul es

Each voi ce-providing nodule is responsible for silencing its own
voi ces on those error types that silence all sounds. How this
is carried out depends on the nodule, but ideally it should give
conplete and i medi ate silence with no further disturbance to
the voices, that is, no alteration to voice control val ues.

Sone nodul es may be unable to achieve silence, for exanple, if
they are driving renote physical voices through a sinple
interface. In this case, they use the best avail able
alternative, such as sending an 'off gate' nessage to each
voice, and letting the sounds end naturally as if in rests.

68

errors and editors

Each editor may provide extra error effects and reporting
facilities specific to its function, in particular, for |ocating
the site of an error in the data being edited. Three types of
error |ocation are conmon

* of the site of an error given when the data was executed
with the editor's "direct execute' facility, if it has one

* of the site of an error given when the data was nade into a
word — an alternative to the % pronpt's '!"' indicator

* of the site of the last error to be reported, when the word
containing it is subsequently called into the editor

Oten, the editor indicates the |ocation by automatically
positioning the edit node cursor on it on entering edit node.

error-like events

Certain events which are not errors have sone of the sane side
effects as sone errors, including:

SCORE is executed if necessary

pl ayers 1-10 are stopped

all sounds are silenced

HALT and PAUSE states are set to 'off'.

* % X

and the follow ng additional effects:

* the nusic action list of player 0 is cleared
* the record of the location of the last error in a user
word, available to editors for special locating, is cleared

These events arise fromany conmand that re-arranges nenory and
therefore interrupts the execution of the user program The
conmands in this category are

NEW LQAD, SAVE

COVPACT

M_.OAD, | NSTALL, MDELETE

DELETE, RENAME

[...] (when redefining an existing word)

Note that MODE is not one of these, so it is usable fromw thin
t he user program

69

error nessages

AVPLE s error messages are as follows, in al phabetical order.
The operating systemand its services (including the filing
system) have their own error nessages, and you shoul d consult
their docunentation if you get any nessage not |isted bel ow

nunber
A serious fault has arisen in the system probably as a result
of menory being corrupted.

If this occurs, you should restart the | anguage fromthe system
disc (or with *AMPLE). You can save the programfirst, but in
extreme cases this nay al so have been corrupted and the file
will be rejected by LOAD.

A faulty programcan corrupt nenory by incorrect use of a store
operator (#! or #B!'), for exanple if when assigning a value to a
vari abl e, the nane of the variable word is m ssing.

One nunbered error that cannot be cured by re-starting the
systemis error 8. This neans 'Too many servers', meaning that
an attenpt was nade to install too many voice-providi ng nodul es.
This can only arise froman incorrect installation sequence on a
user-created systemdi sc. The nmaxi num nunber of voice-providing
nodul es i s seven.

Al ready present
An attenpt was made to M.QAD or |INSTALL a nodul e that was
already in nmenory. The M.QAD or | NSTALL does not take pl ace.

Bad bar
The total length of a bar did not match the bar | ength set by
BAR. This is issued by '|' and usually arises froman extra or

m ssing note in a bar, or a missing barline.

If you are entering a sequence of AMPLE notation at the % pronpt
by copying froma listing on the screen, you can avoid errors
frominconplete bars by entering 'O BAR first.

Bad cont ext

A word has been used in an incorrect context, for exanple, using
a command such as LOAD inside a word definition, or a word that
is only allowed inside word definitions, like $2, as a conmand.

70

The foll owing words and types of word can cause this error

wor d faul t

"conmand only' word inside [...]

"[] only' word as a conmand, that is, not inside []
) no (

)K no K(

(...) inside K(YK or ()

K(...)K inside K(YK or ()

€O) i nsi de one of players 1-10

READY i nsi de one of players 1-10

I NDEX or COUNT not directly inside FOR(...)FOR

Bad el enent

An attenpt was made to access an array el enent outside the range
di nensioned. This error is issued by ARRAY if it finds the

el ement nunber to be less than 0 or greater than the nunber

di nensioned in the preceding DIM The error nmessage gives the
name of the array word, not of the word in which it was used.

This error is also issued by FVAR when an attenpt is nade to
access stack itens that are beyond the range of the stack, for
exanple if 4 FVAR is executed when there are only 3 val ues on
the stack bel ow the FRAME point, and when the stack pointer is
found to be bel ow t he FRAME poi nt.

Bad hex

The first character after & was not a valid hex digit. This
error is given by & and &VAL.

71

Bad | oad address

An attenpt was made to |l oad a nodul e which requires a particul ar
| oad address, and nenory space was not available at this
address. Normal nodul es can be | oaded at any address, and only
very special nodules are able to cause this error

A nmodul e may i ndependently require a | oad address to be a

certain range, for exanple outside the region of shadow RAM and
will therefore issue this error itself under certain conditions.
These conditions should not arise under nornal use of the nodul e.

Bad node
There was not enough free nmenory for the node requested by MODE
or a nodul e.

If this occurs from MODE typed in directly as a conmand or
i ssued froma user programor, you should enter COVMPACT and try
again. COWPACT is done autonatically on LOAD and SAVE

Renenber that | oaded nodul es take up nmenory and | oadi ng anot her
nodul e may stop you switching to a particular node with a
particul ar size program

On BBC M croconputers with shadow RAM this error does not
appear.

Bad nodul e
The file |l oaded with INSTALL or MLOAD was not a valid nodul e.
This happens if you try to MLOAD an AMPLE program for exanple.

Bad nane

There was a fault in the nane given for a new word, either in
"[' or RENAME. It was probably too Iong (longer than 15
characters) or null ("").

Bad pl ayer nunber
An invalid player nunber was given. The range for P(is 1 to
10, and for SHARE is 0 to 10.

Bad program

The LQADed file was not an AMPLE Nucl eus program produced by
SAVE. It is possible to get the 'Too big" nessage for the sane
reason. This error |eaves a clear program as if you had used
NEW

72

Bad ROM

The Nucl eus ROMinage is faulty, due to a fault in conputer or
the ROMIC itself. Before suspecting the ROM you should try it
on anot her conmputer. The ROMinage is checked on *AMPLE
(start-up fromthe systemdisc), AMPLE and BREAK i nsi de AVPLE

Bad string
There was no closing single " in the string. Strings may not
stretch fromone line to the next.

Bad structure

A structure mismatch was found. |In particular, a structure end
or middle word did not match the [ast unmatched structure

begi nning or mddle word, for exanple

FOR(... IF(...) FOR
Each word beginning with) should be used only after its
mat ching word ending with (. The words that can issue this
error are:

)JFOR,)REP,)UNTIL(,)IF,)ELSE(,)P,]

Note that though)K and) are each part of a pair, they are
nmusi ¢ envi ronnent words and not true structure words, so they
give the 'Bad context' error when m smatched.

Di vi sion by zero

An attenpt was made to divide by zero. This usually occurs from
#/, but other systemwords that carry out division can also
issue it. For exanple, +T, -T, +L and -L issue this error if
the '," setting is O, (inside a chord, for exanple).

Escape
The ESCAPE key was pressed. ESCAPE stops all players and
sounds, and returns control to the keyboard.

Extra nunber
There was a nunber left on the stack after the input |ine had
been execut ed.

This arises when there is a surplus nunber on the line or in a
word on the line, that is, a nunber which is not used by
foll owi ng words. For exanpl e,

24, bDc 12DE 24, G (mssing comma after 12)
1 00 OFFSET (space in nunmber 100)

In conplicated prograns where the stack is used for tenporary
storage, this error can result fromfaulty programstructure or

73

logic. Note that if such a fault arises in one of players 1-10,
it will not be detected unless it is repeated so as to cause a
'Too many nunbers' error.

Extra string
There was a string left on the stack after the input |ine had
been execut ed.

This usually means that you gave a string argunent where one was
not required, for exanple:

"tune" WRI TE

Care nmust be taken when using two double quotes to include a
doubl e quote in a string.

Fi xed nodul e
An attenpt was made to delete a fixed nodule (status F) with
MDELETE

Only nodul es that are tenporary (status T) or program | oaded
(status P) may be deleted. You can find out the status of a
| oaded nodul e wit h MCAT.

In use

An attenpt was made to DELETE a word, or MDELETE a nodul e, that
was in use. You can use FIND to |ocate any usages in the
program The nodule could alternatively be in use as the
current editor. MCAT indicates both kinds of nodul e use.

To delete a recursive word, you should first redefine it to an
enpty definition, for exanple, "fact" []

M st ake
Characters on the input line were not understood, i.e. were not
recogni sed as a word, nunber or string.

If you mis-type a conmand, the systemw ||l interpret as nuch of
it as it can in ternms of the existing user and system words
before it is forced to give the ' M stake' nessage

This error can sonetinmes arise if an essential separating space

is left out, so two nanes are run together and unintentionally

produce the nanme of another existing word. For exanple, if
partl act was entered as part lact

and there was a word called '"partla', this |onger word woul d be

recognised. |If there was no word called 'ct', the 'M stake
nmessage woul d appear.

74

No number

A nunber was nissing i.e. the nunber stack was enpty when a word
attenpted to renove a nunber. This is usually the result of

| eavi ng an argunent out, for exanple

MODE (shoul d be, for exanple, 7 MODE)

In conplicated prograns that use the stack for tenporary
storage, this often results froma programming fault. |If there
was a tenporary nunber on the stack when a word attenpted to use
t he m ssing nunber on top, the tenporary nunber will be used

i nstead, so you should be careful to test the individua

sections of conplicated words, preferably by defining them as
wor ds.

No room

There was not enough free nmenory for the operation. This error
can be produced in a word definition, during editing, and by P(
ACT(and DM

There nay be enough free nmenory in total, but split up so that
the largest single piece is too small. COWPACT arranges all the
free nenory into one piece.

There may still be players in existence fromthe last run of a
program The space they consunme can be recovered by di scarding
them wi th ESCAPE or STOP. COWPACT does this autonatically.

No string
A string was mssing i.e. the string stack was enpty when a word
attenpted to renove a string

You nmay have left out an argument, or put it in the wong place, for
exanpl e

SAVE "tenp"
The keyboard input line is always on the string stack, so that
inside a word, this will be used instead of a missing string and

the error will appear when the current directly-executed word
fini shes.

75

No such item
There is no word or nodul e of the given nane.

Note that the case of word and nodul e nanes is significant, so
this error can result fromyou entering the nane in the wong
case.

Too big
There is not enough free nmenory to | oad the program or nodul e.

Menory is shared between the program nodul e, screen (on

non- shadow nmenory conputers) and the BBC M cro operating system

If you change the ampunt of nmenory used by any one of these, you
could end up with too little for a program or nodul e that
previously | oaded successfully. Suggested renedies are as foll ows:

reduce the program size

renmove unwant ed nodul es (or use a snaller installation)

change to a nore econonical screen node, for exanple, node 7

renove or disable ROV that increase operating system nenory
usage

This error may also arise if the file | oaded is unrecogni sable
as a valid AVPLE program where one woul d have expected the 'Bad
program error.

Too many characters
The maxi mumtotal length of strings on the string stack was
exceeded. It can hold 128 characters.

Too many | evels
The capacity of the player's return stack was exceeded. This
can happen in the follow ng cases:

1 a too-deep nesting of words was used
2 a too-deep nesting of FOR | oops was used
3 a too-long chain of nusic actions was used

Too many nunbers
The capacity of the nunber stack was exceeded. It can hold 32
nunbers.

The conmonest cause of this error is a loop that | eaves an extra
nunber on the stack each tinme around.

76

Too many strings
The capacity of the string stack was exceeded. It can hold 16
strings.

Too many nodul es

Alimt on the nunber of |oaded nodul es was exceeded. This
limt applies only to nodul es that provide words for use in user
word definition, so, for exanple, nost editor nodules will not
contribute to this. The nmaxi mum nunber allowed is 9.

Too many voi ces

Al'l voices of a particular type were already in use when an
attenpt was nade to assign another. Voices are provided by
nodul es, each of which has a linit on the nunber of voices. See
the appropriate application User Guide for infornation

Too many words
The maxi mum nunber of user words all owed had al ready been
reached. The maxi num nunber of words allowed is 125.

War ni ng: duplicate nane

The new nane specified to RENAVE was al ready in use for another
user word. This nmessage is a warning only, and the operation is
still carried out. Al subsequent references to the nane will
refer to the new word. You can use RENAME again to change the
nane.

77

78

Part 2 - Reference

79

80

12 Dictionary of words

This chapter provides a detail ed description of every AMPLE Nucl eus
word and synbol, for reference purposes. An initial index gives
word nanmes and basic information, and the main dictionary has a ful
entry for each word and synbol

The entries are arranged by nane in a | exicographic
(dictionary-type) order based on the follow ng order of characters:

" #$%&'" () *+, -/ :;, <=>@[\] ™| ~ 09 AZ
Any non-letters at the start of the name are counted as if they were
at the end, that is, they only affect the ordering of otherw se-

i dentical nanmes. For exanple, &VAL appears after VAL even though &
appears before VAL. This neans you can roughly |ocate any nanme by
its letters, ignoring any non-letters init.

The general formof an entry is as foll ows:

word nanme function st at us
input items -> output itens

description
exanpl e(s)
rel ated words

further information

word nane

The word nane is shown exactly as you type it in, except in sone
cases where a description of the name in angle brackets is given

i nstead. For exanple, <carriage return> neans the carriage return
character.

81

function and status

A short description of the word' s function is given after the nane,
sonetines followed by a status itemwhich is one of the foll ow ng:

conmand The word can only be used as a comand entered
directly at the keyboard. It cannot be used in word
definitions, that is, between [and].

[T only The word can only be used between [and], that is, in
word definitions. It cannot be typed in directly as a
conmand.

Wiere there is no status indication, the word can be used both as a
command and in word definitions.

i nput and out put itens

Where the word takes input itenms (argunments) and/or delivers output
items (results), these are indicated on the next line. Each item
(nunberl, for exanple) is explained in the text. |Input itens are
shown before the word, just as you supply themwhen using it, for
exanpl e:

i ndi cation: nunmber MODE
exanpl e use: 7 MODE

Sone words deliver output itenms. Their input/output descriptions
have a -> sign followed by the Iist of output itens which the word
delivers. These are shown exactly as if you had entered themin
pl ace of the word and its inputs, for exanple:

i ndi cati on: nunber 1 nunber2 #+ -> nunber3
exanpl e use: 12 #+ pr oduces 3

Sone words accept and/or deliver nunbers (or |ogical flags) and
strings. Since strings and nunbers are held i ndependently on
separate stacks, the position of a string relative to that of a

nunber, and vice versa, is inmaterial. For exanple,
i ndi cati on: string nunber $- -> rightstring leftstring
exanpl e use: "hello" 1 $-
equi val ent use: 1 "hello" $-

A few words are special synbols that go before a group of
characters, rather than taking a string as an input item An
exanple of this is '*' which treats the rest of the line as an
operating system comand. This type of input itemis shown as a

82

description of characters in angle brackets (< >), for exanple,
the "input/output items' line for '"*' is:

*<| | ne>

description

The description of the word gives all the essential information
in a concise form Mre general information on the subject of
the word and simlar words can often be found in other chapters -
use the index to find these references.

exanpl es

There are one or nore short exanples for all but the very

si npl est words. These are not intended to be fully-functiona
progranms for typing-in, but concise extracts showi ng the use and
function of the word. |In particular, sone of themuse '[] only'
words so they can only be used in a word definition. For the
nost inmportant words that are used in prograns there are conplete
exanpl e word definitions in other chapters.

rel ated words

Next, there is a list of related words. This includes words which
are often used with the word being described, and others which have
related or alternative functions in which you m ght be interested.
further information

This section of the entry only appears for sone words and has

additional information for advanced users only, often with further
exanpl es.

83

i nd

ex of words

<carriage return> mark line end

<S p
!

#!
#*
#+

#+

#-
#1
#11
#12
#2
#21
#21
#21
#<
#=
#>
#?
$+
$-
$12
$2

%

ace> separate itens

nove an extra octave up or down

start literal string

"characters" -> string i nside []

stringl "characters" -> string2 stringl outside []
store nunber at address

dat anunber addressnunber #!

multiply two nunbers

nunmber 1 nunber2 #* -> product nunber (nunberl x numnber 2)
add two nunbers

nunber 1 nunber2 #+ -> summunber (nunberl + nunber 2)
add nunber to nunber at address

dat anunber addressnunber #+!

subtract nunber from previ ous nunber

nunber 1 nunber?2 #- -> differencenunber (nunmberl - nunber?2)
di vi de previous nunber by nunber

nunber 1 nunber2 #/ -> quotientnunber renai nder nunber
dupl i cat e nunber

nunber #11 -> nunber nunber
swap two nunbers

nunber 2 nunber1 #12 -> nunber1l nunber?2

di scard nunber

nunber #2

2 duplicate previous numnber

nunber 2 nunber1 #212 -> nunber2 nunberl nunber?2

21 duplicate nunber and previ ous nunber

nunber 2 nunber1 #2121 -> nunber2 nunber1l nunber2 nunberl

3 rotate positions of three nunbers

nunber 3 nunber2 nunber1 #213 -> nunber2 nunberl nunber 3
test previous nunber is |ess than nunber

nunber 1 nunber2 #< -> flag (nunberl < nunber 2}

test nunbers are equa

nunber 1 nunber2 #= -> flag (nunmberl = nunber2)

test previous nunber is greater than nunber

nunber 1 nunber2 #> -> flag (nunberl > nunber?2)

fetch nunber from address
addr essnunber #? -> datanunber

add string to left end of previous string [1 only
rightstring leftstring $+ -> string (leftstring + rightstring)
split string after nunbered character [1 only
string nunber $- -> rightstring leftstring

swap two strings [1 only
stringl string2 $12 -> string2 stringl

di scard string [1 only
string $2

i ntroduce comment

84

& indicate hexadeci mal nunber
&<hex di gits> -> nunber
accent next note or hit
start additional chord notes
end additional chord notes
i ndi cate operating system conmand conmmand
*<|ine>
+ sharpen next note
, set length
nunber ,
- flatten next note or indicate negative nunber
hol d nusic event
set octave
nunber:
set musi c voice
voi cenunber ;
natural i se next note
set transposition in semtones
transnunmber @
start word definition command
namestring [...]
nove back
end word definition
sl ur next note [1 only
to 9 decimal digits
<deci mal digits> -> nunber
N play rest
A, play chord rest
| nmark end of bar
Ato G play note with ascending pitch
atog play note with descending pitch
ACT execute nusic action

* N~

- -~

— @II

o | — -

see text
ACT(start nusic action sequence [1 only
posi ti onnunber ACT(
)ACT end nusic action sequence [1 only
ALI GN ensure text cursor is at start of line
AMPLE restart system conmand

AND AND bits of nunbers
nunber 1 nunber2 AND -> ANDnunber
ARRAY access array el ement
el ement nunmber baseaddr essnumber ARRAY -> addr essnunber
ASC convert character to nunber
string ASC -> asciinunber [T only
#B! store |ow byte of nunber at address
dat anunmber addr essnunber #B!
#B12 swap high and | ow bytes of nunber
nunber 2 #B12 -> nunber?2

85

#B? fetch byte from address
addr essnunber #B? -> dat anunber
BAR set bar length in length units
| engt hsnumber BAR
$CHR convert nunber to character
asci i nunber $CHR -> string
CLEAR clear editor data
CODE call machi ne-code routine
YXnunber CAnunber addressnunber CODE -> YXnunber
COWPACT conpact unused menory
COUNT return | oop count
COUNT -> nunber
DELETE del ete word
nanmestri ng DELETE
DIM reserve nenory
si zenunber DI M -> addressnunber
DI SPLAY displ ay text
DURATION wait for a period of tine
nunber DURATI ON
)ELSE(separate conditional sections
EVERY | eave 'every' val ue
EVERY -> nunber
FAST select fast/normal tenpo

flag FAST
FCOPY copy nunbers fromfrane pointer
nunber -> nunberl ... nunber-n

FIND find uses of word
namestring FI ND
FOR(start definite | oop
count nunber FOR(....)FOR
JFOR end definite | oop
FRAME set frame pointer to top of stack
FRAME! wite frame pointer
poi nt er nunber FRAME
FRAME? read frame pointer
FRAME? -> poi nt er nunber
FVAR access stack franme item
el ement nunber FVAR -> addr essnumnber
GO start players together
GVAR create variable
GVAR -> addressnunber
HALT halt/continue tinmebase
flag HALT
#IN wait for and get keypress
#I N -> asci i nunber
$IN input line fromkeyboard
$IN -> string
| DLE pass control to other players
IF(start conditional sequence

flag IF(...)IF or flag IF(...)ELSE(...)IF

86

[] only

conmand

PAnunber
conmand

[T only

conmand

[T only

conmand

[T only

[] only

[] only

[T only

[] only

)IF end conditional [1 only

| NDEX | eave | oop index [1 only
| NDEX - > nunber
I NSTALL install nodule conmand

namestring | NSTALL
K(start key signature
)K end key signature

LEN get length of string [1 only
string LEN -> string | engt hnunber
LOAD | oad program conmand

nanmestri ng LOAD
"L set accent strength

nunber 'L
=L set dynanic |evel
nunber =L

+L increase dynanic |evel
changenunber event snunber +L

-L decrease dynanic |evel
changenunber event snunber -L

MAX | eave | arger of two nunbers
nunber 1l nunber2 -> | argest nunber

MCAT di spl ay cat al ogue of nodul es command

MDELETE del ete nodul e conmand
nanmestri ng MDELETE

MEM show nenory usage in bytes command

MN |eave snmaller of two nunbers
nunber 1l nunber2 -> snal | est nunber

M_.OAD | oad nodul e command
nanest ri ng MLOAD

MODE enter display node command
nunber MODE

MPREFI X set nodule filenanme prefix conmand
string MPREFI X

MSHOW show |ist of words in nodul e command

nodnanest ri ng MSHOW
MVAL! wite mnusic variables

franel ev keysi g barcountlen octnote |length tranvoi ce MAL!
MVAL? read nusic variabl es

MVAL? -> franel ev keysig barcountlen octnote | ength tranvoice
NEW di scard program conmand
NL print new line
NOT invert sense of flag

flagl NOT -> flag2
NOUT print nunber in decinal

nurber NOUT
&NQUT print nunber in hexadeci ma

nurber &NOUT
OFF leave off flag val ue

OFF -> offfl ag

87

ON | eave on flag val ue
ON -> onfl ag
OR OR bits of nunbers
nunber1l nunber2 OR -> CRnunber
OSCLI send string to operating system
string OSCLI
#OQUT send ASCI| code to screen
nunber #OUT
$QUT print string
string $OUT
$PAD pad string to length with spaces
stringl | engthnunber $PAD -> string2
P(start concurrent sequence
pl ayernunber P(...)P
)P end concurrent sequence
PAUSE pause/continue sound processing
fl ag PAUSE
PNUM | eave player nunber
PNUM - > nunber
KEY test key status or get keypress
negati venunber QKEY -> flag
zeronunber KEY -> asci i nunber
QTIME return queue tine
QI ME -> nunber
QU T Ileave editor
RAND get random nunber
RAND - > nunber

RAND! set starting point for random nunbers

nunber RAND
RANDL get random nunber in range
maxnunber RANDL -> nunber
READY nmake system ready
RENAME renane word
ol dnanestri ng newnanestri ng RENAMVE
REP(start indefinite |oop
JREP end indefinite | oop
SREV reverse the order of characters
string $REV -> reversedstring
RVO CES set voices range
st art nunber endnunber RVO CES
SAVE save program
string SAVE
SCORE prepare for music words
SHARE sel ect voice ensenbl e
ensenbl enunber SHARE
SHOW show user words
SIGN test nunber is negative
nunber SIGN -> fl ag
SI MPLEACT renove all nusic actions
SP print a space

88

[]

[]
[]
[]
[]

only

only
only
only

only

conmand

conmand

conmand

STOP stop program

$STR convert nunber to decinal string representation [] only

nunmber $STR -> string

&BSTR convert nunber to hex string representation [1 only

nunber &$STR -> string
$STRIP renove | eadi ng spaces fromstring
stringl $STRIP -> string2
=T set tenpo
nunmber =T
+T increase tenpo
changenunber beat snunber +T
-T decrease tenpo
changenunber beat snunber -T
TYPE type word definition on the screen
nanmestring TYPE
JUNTIL(exit fromindefinite |oop
UNUSED make voice(s) unused
VAL convert string to unsigned deci mal nunber
string VAL -> renainingstring number ON i f
string VAL -> renainingstring OFF i f
&AL convert to unsigned hex nunber
string &AL -> renainingstring nunber ON if
string &AL -> renainingstring OFF i f
VO CE sel ect voice(s)
voi cenunber VA CE
VO CE!' set voice settings in frane
voi cenunber VO CE! or EVERY VO CE!
VO CES set nunber of voices
nunber VA CES
W ND advance tine
ti cksnunmber W ND
VWRI TE display text of all words
X play hit
XOR exclusive-OR bits of nunbers
nunmber 1 nunber2 XOR -> XORnunber

89

[T only

conmand

[] only

[] only
f ound

not found

[T only
f ound
not found

conmand

di ctionary of words

<CI’ > mark |line end

The systemincludes a word whose nanme is just a single carriage
return character {code 13), for the purpose of representing |line
ends inside words. Wen a word definition is entered, each line
of text, except the last line, ends with a carriage return
character. The carriage return word is included at this point in
the sane way as any word with a normal nane, thereby narking the
end of the Iine. Wien the word definition is displayed, with TYPE
for exanple, the effect of the carriage returnis to start a new
line on the display.

The carriage return al so narks the end of comments, so that after
% only the characters up to the end of that line are ignored, and
characters on the next line are treated as nornal

related words NL ALIGN
further information

A literal (quoted) string cannot contain a carriage return, since it
cannot stretch fromone line to the next, and there is no special
nmechani smfor including control codes in literal strings. However,
you can include a carriage return in a string on the stack by first
creating a one-character string containing the

code using $CHR, for exanple:

13 $CHR %create string with just CR
"HELLO' $+ % make "HELLO<CR>"

To print a carriage return, use NL
"HELLO' $OQUT NL % print HELLO fol |l owed by CR

Carriage returns cannot be included in coments.

<Space> separate itens

The space character is dealt with by the systemas a word nuch
like words with norrmal nanes. |t does nothing when executed, but
is inportant for separating itens and maki ng words nore readabl e.
It is stored in word definitions so that spacing is preserved as
expect ed.

A space nust be put between two itens that could be m sinterpreted

(by the user or the system) if they were run together, for exanple
nunbers, strings, and sonme words. In any event, you should

90

separate all words, except in lines of rmusic words where this
woul d waste a | ot of space

exanpl es
1 2 #+ NOUT % space needed between nunbers

"keyl" "key2"NAME % space needed between strings to
% avoid "" in longer string

1 VO CE Sinpl ei ns % space between VO CE and Sinpleins is
% essential to avoid VO CES

further information

The system stores spaces in conpacted formso that a group of nore
than two spaces uses no nore storage space than just two spaces.
A single space uses one byte and two or nore spaces use two bytes.

nove an extra octave up or down

The '!'" ('pling') word noves the pitch of the next note by one
extra octave, that is, if it is upper case, it raises it an
octave, and if it is lower case, it lowers it an octave. This
applies even if it is in between two notes of the sane case.

You use it for pitch junps of nore than an octave, and junps of an
octave between notes of the sane case. '!' is entirely equival ent
to the appropriate ':' setting at the sane point, but '!" is
relative to the last note so is nore suited for use in the mddle
of a line or phrase, whereas ':' is intended for the start of the
line or phrase.

Any nunber of '!' signs can be put before a note to junp by two or
nore extra octaves.

exanpl es
l.c!C is equivalent to l.c 3:c
l:clc is equivalent to l:c O:c
1:Clc is equivalent to 1:Cc 2:C
1.cdl!cC is equivalent to 1:C 3:C
1:!C is equivalent to 2:C

91

start literal string

"characters" -> string i nside []
stringl "characters" -> string2 stringl outside [...]

The doubl e quote character is used to include strings of
characters in a programor comand. Double quotes are put at the
start and end of the string of characters. To include the double
guote character itself in the string, two double quotes are

i ncluded. The string cannot stretch over the end of the |ine.

exanpl es
" progr ani SAVE % filename provided as a string
"HELLO' $OQUT % print HELLO
"Say ""HELLO'"" $QUT % print Say "HELLO'

further information

Control codes cannot be included in literal (quoted) strings, but
a string containing a control code can be nmade on the stack with
$CHR, and this can then be added to a literal string using $+ for
exanpl e:

%to include CRin a string
13 $CHR %create string with just CR
"HELLO' $+ % make " HELLO<CR>"

Strings can contain any 8-bit code, included in this way.

In direct node, that is, outside [...], strings operate differently
because the systemuses the string stack to hold the input line
(command line) as a string at all tines. Normal Iy, you only use
the string stack inside word definitions, that is, any word
executed fromthe conmand |ine nmust preserve the state of the
string stack.

Wereas inside [...], " " puts the string on the top of the
stack, when entered in the conmand line, it puts the string as the
second itemdown, that is, underneath the input line string. So,
the conplete stack action of " is actually:

"characters" -> string inside []
i nputstring "characters" -> string2 inputstring outside []

Unli ke the nunber stack, there is only one string stack, accessed

equally by all players. Wen player 0 is using the string stack
for the command interpreter for exanple, all other players should

92

preserve the state of the stack over each IDLE or other possible
idle (see IDLE for details of possible idles).

##! store nunber at address
dat anunmber addr essnunber #!

#! stores nunber at a particular address. It is nostly used for
storing values in variables and arrays, and usually appears
i medi ately after the variable nane.

exanpl es
"total" [GVAR ... % variable 'total"’
0 total #! % set to zero
"totals" [10 DODMARRAY] ... %array 'totals'
1 O totals #! % element 0 set to 1
xvar #7? yvar #! % transfer value fromxvar to yvar

#! will operate on any address and should therefore be used with
care to avoid corrupting menory.

related words #? #+! #B! #B? GVAR DI M ARRAY
further information

#! stores the | ow byte of the nunber at the address, and the high
byte at the address plus one.

¢¢* multiply two nunbers
nunber 1 nunber2 #* -> productnunber (nunberl x nunber2)
nultiplies the two nunbers together, |eaving the product.
exanpl e -2 3 #* produces -6
rel ated words #+ #- #/
#+add two nunbers
nunber1 nunber2 #+ -> sumunber (nunmberl + nunber?2)
#+ adds the two nunbers together, |eaving the sum
exanpl es

2 3 #+ pr oduces 5

93

#11 #+ ... % fast multiply by two
rel ated words #- #* #/
##4'! add nunber to nunber at address
dat anunber addressnunber #+!
#+! adds the nunber to the nunber at the address given. It is
used for adding nunbers to variables and array elenments and in

nost cases it is put imediately after the variable or array nane.

It provides a nore efficient alternative to fetching, adding and
storing:

1 count #+! is equivalent to count #? 1 #+ count #!

#+! will operate on any address and shoul d therefore be used with
care to avoid corrupting nmenory.

exanpl e 1 total #+! % add one to tota
-1 total #+! % subtract one fromtota

rel ated words #! #? #B! #B? GVAR DI M ARRAY
##' subtract nunber from previ ous nunber
nunber 1 nunber2 #- -> differencenunber (nunmberl - nunber?2)

#- subtracts the nunber fromthe one before it, |eaving the
di f ference.

exanpl es 51 #- pr oduces 4
5 1 #12 #- produces -4

"neg" [% change sign
0 #12 #-]

2 neg produces -2
rel ated words #+ #* #/
##/ di vi de previous nunber by nunber
nunber 1 nunber2 #/ -> quotientnunber renai nder nunber

#/ divides the nunber into the one before it, |eaving both the
qguotient (integer part) and the renai nder (fractional part).

94

For a sinple integer division (like BASIC DIV), the renainder is
di scarded using f2:

nunber 1 nunber2 #/ #2 -> quotient nunber (nunberl DIV nunber2)

If only the remainder is needed (the result of BASIC MXD), the
guotient is discarded:

nunber 1l nunber2 #/ #12 #2 -> renmai nder nunber
(number 1 MOD nunber 2)

exanpl es 10 3 #/ pr oduces 31 % full result
10 3 #/ #2 pr oduces 3 % quot i ent only
10 3 #/ #12 #2 pr oduces 1 % r ermai nder only

"mod" [% i nteger remainder
#1 #12 #2]

10 3 nod pr oduces 1
rel ated words #+ #- #*
further information

For each conbi nati on of argunent signs, the results signs are as
fol |l ows:

nunmber1l nunber?2 qguot i ent renmai nder
(dividend) (divisor)

+ + # -> + +
- + #o-> - -
+ - # -> - +
- - # -> + -

##].]. dupl i cat e nunber

nunber fl1 -> nunber nunber

#11 nmakes a copy of the nunmber, that is, it |eaves two nunbers
instead of the one. It is used when there are two operations
requi red on the sane nunber, for exanple, printing out, and
storing in a variable.

exanpl es 4 #11 produces 4 4
#11 NOUT count #! % print and store
#11 0 #=I1F(...)IF % non- destructive test

95

rel ated words #2 #l 2 #212 #2121 #213

#12 swap two nunbers

nunber 2 nunberl #12 -> nunberl nunber?2

#12 exchanges the top two itens on the nunber stack. It allows
the first-supplied of two nunbers to be accessed while keeping the
other for a further operation. It is often used to exchange two

i nput items that have been supplied in reverse order for
conveni ence.

exanpl es 8 5 #12 produces 58
oo 0 #12 #- L. % negat e
"mod" [#/ #12 #2] % nunl nun® -> renai nder

rel ated words #2 #11 #212 #2121 #213
##:2 di scard nunber
nunber #2
#2 discards the nunber. This is often used to discard an unwant ed

product of an operation or the nunber left after a list of
operations that duplicate it.

exanpl es 2102 produces 2
5 2 # #2 % r ermai nder di scar ded
#I'N % nunber supplied ..
10 FOR(
#11 ... % ... repeatedly used ..
) FOR #2 % .. and then discarded

related words #11 #12 #212 #2121 #213

#212 dupl i cate previ ous numnber
nunber 2 nunber1l #212 -> nunber2 nunber1l nunber?2

#212 copies the second-fromtop nunber to the top of the stack
| eaving three nunbers instead of two. It allows easier access
when two or nore nunbers are being operated on

#212 NOUT ...
is equivalent to L. #12 #11 NOUT #12 ...
exanpl e 3 21 #212 pr oduces 3212

rel ated words #2 #11 #12 #2121 #213

96

#2121 dupl i cate nunmber and previ ous numnber
nunber 2 nunber1 #2121 -> nunber2 nunber1l nunber2 nunberl

#2121 makes copies of two nunbers, |eaving four instead of two.
It is useful for performng an operation on two nunbers while
| eaving themfor a further operation

exanpl es 4 7 #2121 produces 4 7 47
#2121 #=1F(...)IF % non- destructive test

related words #2 #11 #12 #212 #2121 #213

#213 rotate positions of three nunbers
nunber 3 nunber2 nunber1 #213 -> nunber2 nunberl nunber 3

#213 noves the three nunbers so that the third-fromtop nunber is
noved to the top of the stack, and the other two are noved down
accordingly. It allows access to the third nunber on the stack
so that with careful planning, three tenmporary val ues can be
stored during cal cul ati ons.

exanpl es 3 21 #213 produces 213
"#132" [#213 #213]
3 2 1 #132 pr oduces 132
rel ated words #2 #11 #12 #212 #2121
¢¢<: test previous nunber is |ess than nunber
nunber 1 nunber2 #< -> flag (nunberl < nunber?2)
#< conpares the two nunbers and | eaves ON if nunberl is |less than
nunber2, and OFF ot herwi se, renoving the nunbers. Renenber that

the order of nunbers is such that 'nunber #<' asks 'is it |ess
than this nunber'.

exanpl es 4 0 #< produces OFF
4 6 #< produces ON
O#> IF(C ...)IF % do if positive and not O
"H#>=" [#< NOT] % ' greater than or equal

related words #> #=

97

further information

#< wor ks on signed values, so take care when using it on 16-bit
unsi gned val ues such as addresses, if they could be greater than
&7FFF.

#: test nunbers are equal
nunber 1 nunber2 #= -> flag (nunmberl = nunber2)

#= conpares the two nunbers and | eaves ONif the top two nunbers
were equal, and OFF ot herw se, renoving the nunbers.

exanpl es 4 4 #= pr oduces N
4 5 #= pr oduces OFF

O #= IF(C ...)IF %do if equal to O

"H#<S" [#= NOT % ' not equal to']

related words #< #>

¢¢:> test previous nunber is greater than nunber
nunber 1 nunber2 #> -> flag (nunberl > nunber2)

#> conpares the two nunbers and | eaves ON if nunberl is greater
t han nunber2, and OFF otherw se, renoving the nunbers. Renenber
that the order of nunbers is such that 'nunber #>' asks 'is it
greater than this nunber'.

Exanpl es -2 0 #> produces OFF
3 2 #> produces ON
O#> IF(C ...)IF %do if greater than zero
"H#<=" [#> NOT] % 'l ess than or equal

rel ated words #< #=
further information
#< wor ks on signed values, so take care when using it on 16-bit

unsi gned val ues such as addresses, if they could be greater than
&7FFF.

98

##l? fetch nunber from address
addr essnunber #? -> dat anunber

#? fetches the nunber fromthe address given. It is mainly used
for reading variables and array el enents, and is put imediately
after the variable or array nane.

exanpl es total f? NOUT % print variable 'total’
3 totals #? NOUT % print elenent 3 of array 'totals’

rel ated words #! #+! #B!' #B? GVAR DI M ARRAY
further information
The I ow byte is at the address, and the high byte is at the address

pl us one.

354' add string to left end of previous string [1 only
rightstring leftstring $+ -> string (leftstring + rightstring)

$+ adds (concatenates) the two strings, with the second (top)
string going on the beginning (left end) of the first-supplied
one. To add the strings the other way around, use $12 to exchange
themfirst.

exanpl es
“"there" "hello" $+ pr oduces "hell o there"
"hell 0" "there" $12 $+ produces "hell o there"
13 $CHR "hel | 0" $+ produces "hel | o<CR>"
"hell 0" "" $+ produces "hel | 0"

related words $- $2 $12 $REV $CHR

35' split string after nunbered character [1 only
string nunber $- -> rightstring leftstring

$- splits the string after the nunbered character position

leaving the left part with the remaining right part underneath.

Wth further words, it can be used to extract any left, middle or

right part of the string.

exanpl es

"hello" 2 $- produces "Il 0" "he"

99

"$rest" [%string | ennunber $left -> restofstring

$- $2]

"Item 1" 5 $rest pr oduces "t

"$md" [%string | ennunber startnunmber -> mdstring

$- $2 $- $12 $2]
;héllo" 21 $md pr oduces "el "
related words $+ $2 $12 $REV $CHR
further information

Either or both results can be null strings.

is less than zero or greater than the string |ength,

split is nade at the nearest limt.
$12 swap two strings
stringl string2 $12 -> string2 stringl

$12 exchanges the two strings.
the strings in the opposite order

exanpl es
"hell 0" "there" $12 produces "there" "hello"
"2" " items" $12 $+ pr oduces "2 itens”

related words $+ f- $2 $REV $CHR

##:2 di scard string

string $2

If the split position
then the

[T only

A common use is before $+ to add

[] only

$2 discards the top string. It is used to discard the unwanted

product of an operation such as $- or VAL.

exanpl es
"hell 0" "there" $2 pr oduces "hel | 0"
"hello there" 6 $- $2 pr oduces "t here"

related words $+ $- $12 $REV $CHR

100

% i ntroduce comment

% causes the rest of the line to be ignored, allowing a conment to
be included. Any normal printing characters can be included in
the conment, but control codes, including carriage return, cannot.

Exanpl e 3 VOCES string %for chords

é& i ndi cat e hexadeci mal nunber
&<hex di gi ts> -> nunber

& goes before a hexadeci mal nunber. The digits 0-9 and A-F are
allowed in the nunber. There nust be no spaces between digits or
between & and the first digit.

exanpl es

&FF is equivalent to 255
&8000 is equivalent to - 32768

&FF AND . .. % | eave | ower byte only
rel ated words &NOUT

1
accent next note or hit

applies an accent to the next note or hit. |t operates by
tenmporarily adding the value set by 'L to the normal dynanic |evel
of the next note or hit.

The interpretation of ' in sound depends on the voice type, and
possi bly the instrunment as well.

stops any change of dynamic |level (due to +L or -L) at its
current val ue.

exanpl e

FOOXX T XXXX XXX XXX % accent every 4th beat
related words 'L =1L
further information

' also works on rests and holds, but this has no effect on the
sound when using the default music action

101

(start additional chord notes
(see further information)

Chords are witten using round brackets. A chord consists of a
first ("main') note, followed by the other notes enclosed in round
brackets. In other words, the brackets contain those notes that
are to play at the sanme tine (that is, on other voices) as the
previ ous note.

C(EG)

| | |

mai n note | |

first additional note second additional note

The pitch of the notes in a chord sequence use the upper-case-up

| ower - case-down rule as do notes in a sinple tune, but the pitch
does not sinply run through all notes in the order they appear - the
main notes are not affected by the additional notes. The main notes
act as a sinple line with the pitch nmoving in the normal way from
main note to main note, so

in the sequence: c(EG D (FA) c(EGQ D (FA)
the main note plays c D c D

Each bracketed group of additional notes has its own line starting
on the previous main note - the first additional note follows on
fromthe nmain note, the second follows on fromthe first, and so
on. At the end of the bracketed group, the | ast additional note
does not affect the next nain note.

In the exanpl e above, the additional notes rise in pitch fromthe
mai n note, but they could equally well be witten down, or up and
down, fromthe nmain note. |If the sounds of the voices are
identical, that is, they have the sane instrunment, volunme etc., it
nmakes no difference which voice a given note is played on

However, it's clearest to choose a single direction, either bottom
up or top down, and stick to it throughout the chord sequence.

Rests and holds can be included in the main [ine or in the
brackets to stop the sound of notes on individual voices. You do
this to play a chord which has fewer notes than the one before it,
for exanpl e:

C(EGB) F(AC") F(AQ
A full chord of rests (for exanple ~(~")) stops all voices,
playing a rest for the whole part. A nore convenient way of doing
this is with the chord rest synbol, *;

I f no synbol appears for a particular voice, it continues as if a

102

hol d had been witten.
will hold the conplete chord,
chord of holds. For exanple,

This neans that a hold on the main voice
SO you never
(1)

need to wite a ful
is equivalent to /

You can play broken chords (chords with a strunm ng effect

produced by a delay before each additiona
adding a length setting after the open bracket.
t hen have a correspondi ng delay before it.
only applies inside the brackets -
Al so,

bracketed notes does not affect the Il ength of the main note,
make the whol e chord | onger.

note will
setting of the main notes.

does not

note in the chord) by

Each subsequent

This length
it does not affect the length

the extra length of the

so it

The effect of a length setting inside brackets is as foll ows:

Nor mal chords

48, C(EGB) F(ACE) ;

Voi ce 4 B----- E-vw-- A
Voi ce 3 G----GCG---- A
Voi ce 2 E----- Ae---- A
Voice 1 C---- Fevw-- A

Br oken chords
48, C(8, EGB)F(8, ACE) *;

B----- E--A
G----C--"
N
N

C—n-Forme-

To make broken chords stop conpletely before the next strum you

can 'danpen' al
bet ween them for exanple

48, C(8,EGB) 0,7,

voi ces by putting a zero-length chord rest

48, F(8, ACE)

Hts (Xs) can be included in chords to restrike previous notes or

to play percussion instrunents.

defined to play on particular voices with ';",
nore hits together.

brackets to play two or

Renmenber that

bef ore you can play chords,

Even if you are using hit synbols
', you can still use

you nust put an

i nstrunment on each of the voices you want to be heard.

exanpl es

si npl e sequence

i sol ated chord

el abor at e sequence
br oken chords
novi ng mai n voi ce

percussion with X

percussion with user synbols

c(EQ) D(FA) c(EG) d(FA)
A EGB) 7

C(EQ /(/a) g(BD) / f(AY)
O(8, EGB) F(8, ACE)

C(F)bag f(D)GAB C(F)/// *;

XI (X)X X(X)

X" [LX] "y (24

103

xt 1yl I'x xI11yllx(y)
related words); #; , VO CE VA CES
further information
When scoring broken chords, the total delay inside the brackets
can even be longer than the nmain note, meking the strunm ngs

overlap. You can also set a negative length so that the strum
goes before the main note, leading up to the beat.

Overl appi ng Pre-del ay
48, C(24, EGB) F(24, ACE) C(- 8, EGB) F(- 8, ACE) »;
Voi ce 4 B----- E----- B----- Eeeoon-- A
Voi ce 3 G----G---- G----C----- A
Voi ce 2 E----- A---- E----- A---- A
Voice 1 GC---- F----- C---- F-uu-n

When using overl appi ng and pre-delay chords, keep in nmind that you
are actually scoring notes to play in the future and the past, and
wat ch out for themreaching past other events in the present. For
exanmple, if you were to add a chord rest (”;) to the end of the
over | appi ng exanpl e above, it would silence the F, A and C, and
the B fromthe previous chord. The final E would then play as

nor mal .

SCORE does a '1;' so unless you use ';' yourself', nornmal notes
will always play on voice 1, and additional chord notes will start
on voice 2. You can use ';' outside the brackets to make the

chord start on a higher voice

The chord brackets achieve their function by doing two things:
setting 0, so the follow ng notes play inmediately, and causi ng
each note, hit, rest or hold inside brackets to add one to the
setting, so they play on successive voices, starting fromthe main
voi ce plus one. The , and ; settings are local, like the note
pitch, so they are restored by). Inside brackets, the |length of
a note takes place before it starts sounding, so that by making
the length greater than 0 , the notes are delayed to gi ve broken
chord effects.

The dynamic level normally applies equally to all notes in a
chord, but settings can be included in the brackets to affect
i ndi vi dual notes.

You cannot put nore chord brackets or a key signature inside chord
bracket s.

104

(...) use the nunber stack as tenporary storage for the
chord-1ocal nusic environnent, so, strictly, their input/output
descriptions are:

(-> octnote length tranvoice
octnote length tranvoice)

The tenporary val ues are as foll ows:

nane | ow byte hi gh byte
tranvoice voi ce (;) transposition (@
length (,) | ow hi gh

oct note effective last note octave (:)

"(* and ')' can be classified as nusic events (like note, rest,

hit and hold), since in addition to their nodifying effects on the
events contai ned between them they call the nusic action list,
fromwhere they look |like holds. '(' issues a duration to retract
the duration of the last note (so inside the brackets, time starts
fromthe nain note's position), and ')' reinstates the main notes
duration, correcting for the total duration of nusic events used

i nside the brackets. They pass the followi ng stack frane:

description val ue default destination
pitch voice OFF VA CE

pi tch undefi ned Pl TCH

| evel voice COFF VO CE

| evel undefi ned VEL

gat e voice OFF VA CE

gate undefi ned GATE

duration cal cul ated duration DURATI ON

On return fromthe action list, '(' and ')' both execute EVERY
VO CE to return the voice selection to a defined state

) end additional chord notes

Chords are witten using round brackets. See (for nore
i nformation.

i ndi cate operating system conmand command
*<|ine>
* indicates an operating system comand. The foll ow ng

characters, up to the end of the line, are executed as an
operating system comand.

105

To switch to another |anguage, |eaving AVPLE, you use the norna
| anguage entry * conmmand, for exanple:

*BASI C

OGS conmmands that corrupt | anguage nenory are forbi dden. These

i ncl ude those that have warnings in their own docunentation about
corrupting prograns, for exanple *COWACT, *BACKUP, *FORMBO (Acorn
DFS), and *FX20 (OS). |If you need to use, for exanple, a disc
conmand that corrupts nenory, you nust first switch to another

| anguage such as BASIC

exanpl es *CAT
*FX12, 4

related words QOGCLI
further information

* is a command, so you cannot use it in word definitions. You can
use the OSCLI word to issue an operating system command from a
program To issue *FX comrands, you can define your own FX word -
see CODE for details.

Sone extension ROV have conmands or other functions that
seriously corrupt |anguage nmenory and interfere with AVPLE, but do
not necessarily interfere with other |anguages such as BASIC, and
have no warning of the fact in the docunentation. This is often

t he case when the ROM uses | anguage nmenory tenporarily on
processing a * comand (either one of its own or one recogni sed by
the OS or another ROH). Though the contents will be restored

bef ore returning, AMPLE uses its nenory continuously under
interrupts, so even tenporary corruption can cause interference.

+ shar pen next note

+ is the sharp sign. It raises the pitch of the next note by
one semitone, overriding the key signature. It only affects the
next note.
exanpl es +F % F sharp

++C % C doubl e-sharp
related words - = K(

further information

106

The total nodification of the pitch can be up to plus or mnus
64 semitones.

y Set length
number ,

"," sets the basic length for notes, hits, rests, and holds. The
nunber is normally in the range 0 to 32767.

Al notes, hits, rests and holds last for the basic |ength that
has been set with ','. Longer events can be made w t hout changi ng
the basic length, by extending with the hold synbol, '/'.

Suggested basic length settings for conmon note val ues are as
fol |l ows:

name alternative nane [ength
hemni deni seni quaver sixty-fourth 3
deni seni quaver thirty-second 6
sem quaver si xteenth 12
quaver ei ghth 24
crot chet guarter 48
m nim hal f 96
seni breve whol e 192
breve 384

To get the basic length for nodified note val ues such as dotted
and triplet, just multiply the basic length by the appropriate
factor:

nodi fi ed val ue factor exanpl e

dotted note 3/2 (1+1/2) crotchet 48 -> 72

doubl e-dotted note 714 (1+3/4) m nim 96 -> 168
triplet note 2/3 quaver 24 -> 16

You can set short basic |lengths for the grace notes in ornanents
such as trills and nordents. A basic length of zero is sonetines
useful, for exanple, on a rest which ends a note w thout occupying
any tinme itself.

The basic length can be set inside chord brackets to spread the
notes. See '(' for nore information

exanpl es 48, % cr ot chet
32, % dot t ed quaver
16, % quaver triplet

107

48,Cl /I fG24,AN/B 48,C/B C// ~
related words / \ BAR | ()
further information

VWhat basic | ength you choose to represent a particular note val ue
such as a crotchet is entirely up to you, since the tenpo can be
adj usted over a wide range to give the correct playing speed.
Large val ues are cunbersonme and small val ues cannot be divided so
far for short notes. The suggested set of values based on a
crotchet of 48 allows the full set of normal and triplet values to
be achi eved through division and nmultiplication by 2 and 3. If an
application needed divisions into 3,4 and 5 units for exanple, a
crotchet of 60 would be a better choice.

The full range of the basic length is -32768 to 32767. The
ability to program negative-length events is an advanced feature
whi ch can be used for articulation effects, pre-strunmed chords,
backwar ds- pl ayi ng notes, overlaid note sequences, random access
to the tine donain, and nore. The basic length translates
directly into DURATI ON when a nusic event is played, so this is
really a feature of DURATION. See DURATION for nore information

= flatten next note or indicate negative nunber

The '-' synbol has two functions: as a minus sign for nunbers, and
a flat sign for notes.

I medi ately before a decinmal digit, it acts as a minus sign and
t he nunber is accepted as a negative deci mal nunber

QO herwise, it acts as a flat sign, lowering the pitch of the next
note by one senmitone, overriding the key signature. It only
affects the next note.

exanpl es - 200 % m nus 200
-B % B flat
--a % A doubl e-fl at

related words + = K(
further information

The total nodification of the pitch can be up to plus or mnus 64
seni t ones.

108

/ hol d nusi c event

"/'" is the hold synbol. It holds the |ast nusic event on each
voice for one 'beat' - the length set with ',". It is used singly
or repeated to extend notes, hits, and rests.

The hold is the nost basic AMPLE music synbol since it sinply
marks a unit of nusical time in which notes, hits, and rests al
continue with no change. It is often used where a rest would
appear in nore specialised nusic notations, for exanple, between
percussion hits, and in | ong sections where a part doesn't play.

"/' affects chords exactly like nornal notes, so a single '/’ in the
mai n voice holds all the voices. There is no point in witing a
full chord of holds, since the holds inside the brackets, and the
brackets thensel ves (for exanple (///)) are redundant. You do

use '/' in brackets to hold voices when a higher voice is not

bei ng held, for exanmple C(/Q

exanpl es

G/l fGAB /A G// %tune with sinple rhythm

48,f | [/ % two crotchets tied across bar line
| X011 XX % 'rests' with percussion instrunent
0,n 192, /|1/1]1] % four bars 'rest

C(GE) /| C(AF) C(BG %held chord
C(EA) /(G a(Dbg % passing note in chord sequence

related words , \
further information

The length of the hold is added to the bar's total of note
| engths for checking by the next bar |ine.

0,/ has no effect on the nusic. Since '(' sets '0,' a hold

i nside chord brackets has no effect on nusical tine, but nay
still be required to 'pass over' its voice so a note or rest
can be put on a higher voice.

There is a separate word /// which does exactly the sane as
three separate hold synbols, and is provided only to represent
groups of holds nore conpactly. A /// instruction uses the sane
anmount of menory as a / instruction.

Each note letter word calls the player's current nusic action

109

list, passing the follow ng stack frane:

description val ue default destination
pitch voice OFF VA CE

pitch undefi ned Pl TCH

| evel voice COFF VO CE

| evel undefi ned VEL

gat e voice OFF VA CE

gate undefi ned GATE

duration "," setting DURATI ON

On return fromthe action list, it executes EVERY VOCE to return
the voice selection to a defined state

If ~is applied to/ , it is recognised and therefore cleared, but
has no net effect on the interpretation

set octave
nunber

'":'" sets the octave for the next note. O0: neans the octave
starting at mddle C, positive nunbers give higher octaves, and
negati ve nunbers give | ower octaves.

You use ':' to set the octave at the start of each line or
phrase of nusic. Though it can be used in the niddle of a line
or phrase, the '!" word is nore suited for this.

exanpl es

0: %centre of range, around mddle C
1. %treble (G clef, Cis the third space on the stave
-1: %bass (F) clef, Cis the second space on the stave

0:C/l fGAB /A T/ % play tune at middle C
rel ated words !
further information
":' actually sets the effective last note pitch to be Cin the
nunbered octave, so for exanple 0:C sets the pitch as if niddle
C had just played, with an upper case C. Since you can foll ow
the ":' by a lower-case letter, a particular octave nunber gives
access to two octaves of pitches:

O:c 0:d 0:e 0:f 0:g 0:a 0:b 0:CO:DO:EO:F0:G0:AO0:B
<----- | ower octave-------- > <------ upper octave------- >

110

y set nusic voice
voi cenumnber ;

';' sets the voice on which notes, hits and rests will play.
For chords, you nornmally use the chord brackets to autonmatically
pl ace the notes wi thin on successive voices, but in other cases

it is nore convenient to specify the voice directly with ';",
for exanple, for

a line that plays on one voice while other voices are held
conpl ex sequences of overl appi ng notes

pl ayi ng on all voices sinultaneously

a user-defined percussion word that hits a particular voice

* % X

Since the length of a note, rest or hit affects all voices on
the player (like a hold), the voices always stay in step. A
note, hit or rest played on one voice sounds until another one
on the sane voice, even though you may have played on ot her
voices in the neantime. A hold has the sane effect whatever
voice it is on.

SCORE does a '1;' so unless you use ';' yourself, normal notes
will always play on voice 1, and additional chord notes wll
start on voice 2.

The upper/|l ower case pitch novenent is common for all voices on
a player, so the pitch noves fromnote to note as nornal
what ever the voice

Rermenber that you nust put an instrunment on each of the voices
you want to play.

exanpl es
1; % use voice 1

16, 1;cDEF G 2;fGA B 3;aBCD % chord build-up effect

1;C2;G1,D2;,A1,E 2B % over | appi ng notes
"x" [, XT "y [2;X % user-defined hit synbols..
%))/y//x xI 1Tyl X(y) % ...used in percussion score

related words (VA CE VA CES

111

— npaturalise next note

= is the natural sign. It cancels the effect of the key
signature on the next note, so it plays at its unnodified pitch.
It affects the next note only.

exanpl e =b % B nat ural
=F % F natural

related words + - K()K
@ set transposition in semtones

t ransnunber @
'@ sets the transposition to be applied to notes. The nunber
before it is the transposition in sem tones, which can be
positive or negative.
'@ has a variety of uses, including:

* scoring nmusic for transposing instrunents

* playing a fixed note pattern ('riff') at different pitches

* noving a part to play at an octave above or bel ow

The followi ng table shows the @val ue (nunber of semnitones) for
transposing fromC

Transpose C to |l ower pitch:

Pitch nane C ¢+ DDt EF F# G &G A A B C

AMPLE nane c +«¢c d +d e f +f g +g a +a b C

@val ue -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2-1 0
Transpose C to higher pitch:

Pitch nane C ¢+ DD EF F# G &G A M B C

AMVPLE nare cC +«C D +b E F +tF G +G A +A B !C

@val ue o1 2 3 4 5 6 7 8 9 10 11 12

SCORE cancel s the transposition, that is, it carries out 0@.
The key signature works on the note letters rather than the note
pitches, so you don't need to worry about the effect of
transposition on it.

exanpl es

SCORE 12@. . . % pl ay music an octave up

112

o@riff 7@riff 5@riff % play at root, fifth, fourth
SCORE -2@ % play nmusic for a Bb clarinet
further information

The @word can be used as a nmeans to specify note pitch by
nunber rather than letter, for exanple:

t he sequence o@0:C 1@0:C 2@0:C 3@0:C ...

pl ays 0:C +C D +D ...
24, 12 FOR(COUNT @0:C)FOR % rising chromatic scale
12, REP(10 RANDL @0: C)FOR % random ' r obot speech’

The instructions to play a transposed note can be conveniently
defined as a word:

"note" [@O0:C]
b”note 1 note 2 note 3 note
24, 12 FOR(COUNT note)FOR % rising chromatic scale

This is particularly useful for prograns that generate nusic
fromcalculation or stored data, rather than fixed score.

[start word definition conmand
namestring [...]

The [and] (square bracket) synbols are used to define user
wor ds.

"wordnanme" [...]

| |

name of word in double quotes [| |
open square bracket starts definition [
contents |

cl ose square bracket ends definition

The nane can be up to and including 15 characters long. Any
characters nmay be used, but to avoid confusion w th system words
and sequences of them upper-case letters and spaces shoul d
normal |y be avoi ded.

If a user word of the sane nane already exists, it is replaced by
the new definition.

113

The word definition can use any existing user or system word,
ot her than system conmands (words with the 'conmand' status).
The definition can stretch over a nunber of lines.

You will normally enter a new word definition using an AVPLE
editor, but you can enter it directly at the % pronpt. Between
[and], the normal pronpt is replaced by [%.

exanpl es “"tune" [0:48,C//fGAB T /aC/la T//]
"cube" [#11 #11 #* #*] % nunber cube -> nunber”"3
"x" [1;X] % user -defi ned rmusi c synbo

rel ated words |
further information

When an existing word is redefined, players 1-10 and all sounds
are stopped, and player 0's nusic action chain is reset.

As with other conmands, the nanme string is in fact supplied as
the second item down on the string stack (see ""').

Choosing a nane that is a valid sequence of music synbols will

cause confusion, for exanple "cdef" or "cl1". This rarely
happens in practice unless short nanes are used, but you shoul d
still renmenber not to use nanmes that use just the letters 'a' to

"g" with or without a nunber at the end.

To define a recursive word, you first have to create a dummy
(non-recursive) definition, so that the word al ready exists when
you try to define the real recursive one, for exanple:

"fact" [] % dunmy definition

"fact" [% real definition

#11 1 #= I F(#2 1)ELSE(

#11 1 #- fact #*)IF %refers to dunmy, which is
] % then replaced by real one

To delete a recursive word, you nust reverse the process since
DELETE will only delete words that are unused (not referenced by
any word):

"fact" []
"fact" DELETE

114

\ nmove back

\ (back hold) is the converse of / — it nobves back in nusic tine
by the basic length setting. This back-spacing effectively
undoes the net time effect of previous holds, notes, rests and
ties, but doesn't affect when they play, only affecting when the
following notes play. It is useful when you find it nore
convenient to score notes in an order other than that in which
they play, for exanple, to overlay two separately scored note
sequences.

The back hold synbol lets you reach fromone point in the score,
say, where you have used a nusic synbol of your own definition
to place a note at another point in the past or future. One
exanple of this is where a part is broken up into sections and
defined as separate words. If a verse was to start with a few
notes which actually played before the start of the first bar
that is in the last bar of the previous section (a pick-up), you
could score it at the start of the verse where it bel ongs by
first back-spacing with the back hold synbol

When novi ng backwards and forwards in tinme with \ and / , watch
out for spacing past other sound events |ike instrunent changes.

In all other respects, including the effect inside chords, \ is
exactly like / . In fact, 48,\ is equivalent to -48,/ , and
-48,\ is equivalent to 48,/

exanpl es
/\ or \/ % do not hi ng
12,\\\dEF G // /fed c/// % t hr ee- not e pi ckup
24, x111 xI11 x/'I'l % percussion score ..

24, x/'11 x/120,/ 4,x 24,x/1] %wth flam (double hit)
24, x111 xI1/ 4,\x 24, x/!/] %then witten with \

% interl eave notes of two riffs, half a beat apart

riffl 48, \\\\ \\\\ % back to start

24,1 riff2 24, % forward hal f beat, then back
related words [/ , ()
further information
There is no linit to the amount of tine by which you can
back-space with \ |, but thereis alimt to the nunber of sound

events you back-space past. This is the sane as for DURATI ON —
see DURATION for details.

115

] end word definition [1 only

The [and] (square bracket) synmbols are used to define user words.

See] for nore infornmation

~

sl ur next note

~ causes the following note to be slurred, that is, played as a
continuation of the previous note without re-gating. You put a
slur between two notes that you want to be played in a snooth
connected fashion, with just the change of pitch between them

The exact effect of a slur depends on the type of voice

(some cannot carry out the slur at all), and the envel opes of
the instrument. On envelopes with a non-zero sustain level, it
sounds as you woul d expect, but on those that decay to zero, the
second note is quieter and nay be lost entirely. Note that
"slurs' on piano-type sounds are in fact gate period effects and
are not produced with the slur synbol

Because the slur causes the note to play w thout being gated,
other effects of the gate, such as a 'Len' gap, are al so
di sabl ed, so the only effect is a change of pitch

I ndi vi dual notes of a chord may be slurred.

exanpl es nel ody Dc b~ggd~GG B~gBD~chb
chor ds A(CE) /(/~F) A(DF) ~C(~E~-G *;

related words A-G a-g
further information

~ takes effect by disabling the level and gate of the next nusic
event, which it does by setting the | evel voice and gate voice
to OFF, leaving only the pitch and duration to be executed.

This works equally on note, hit, rest, and hold, though in the
case of a hit, rest or hold, the result is interpreted by the
default rmusic action sinply as a hol d.

See '"Ato G for a description of the effect of ~ on the nusic
action vari abl es.

116

O to 9 deciml digits

<deci mal digits> -> nunber
A groups of decimal digits is accepted as a nunber whose val ue
is then left on the stack. A preceding '-' sign nakes the
nunber negati ve.
The range of nunber values is -32768 to 32767.
exanpl es 0 42 -273

related words & —

pl ay rest
N is the synbol for arest. It plays a rest lasting for the basic
I ength, on the current nusic voice. It finishes the previous note

on that voice, causing the sound to stop or die away depending on
the instrunent in use.

Rests can be extended in length by the hold synbol. This is
preferable to repeating the rest, for exanple,”/// is better

than ~~an. Hold synbol s should al so be used rather than rests to
mar k passages where a part doesn't play. |n percussion scores,
normal non-hit beats ('rests' in other notations) are marked by
hol d synbols: the rest has the effect of cutting short the sound
of the previous hit, just as it ends the sound of a note.

Since rests work on individual voices, to silence all notes of a
chord, you should use *;

Each part of a piece usually ends with rests to finish the [|ast
note(s). Section ends can also include rests so that the notes
al ways finish whatever is notated at the begi nning of the next
section. In this case, they nust be zero-length so they take up
no nusical tine.

exanpl es ceeren % i sol ated notes
192,D| ~ % end of piece
XITTXN X X[XA % decayi ng and cut-short beats
CECC 0,7 % zero-1ength rest

related words *;
further information

The length of the rest is added to the bar's total of note
| engt hs for checking by the next bar I|ine.

117

N calls the player's current
foll owi ng stack frane:

nmusi ¢ action |ist,

passi ng the

description val ue default destination
pitch voice OFF VA CE

pitch undefi ned Pl TCH

| evel voice COFF VO CE

| evel undefi ned VEL

gat e voice event voice VA CE

gate OFF GATE

duration ',' setting DURATI ON

On return fromthe action list, it executes EVERY VOCE to return
the voice selection to a defined state

If ~is applied to ~ , it reduces it to a hold (with the default
nmusi ¢ action) — see ~ for details.

/\; play chord rest

~n. plays a chord rest (a rest on all voices of the part), lasting
for the length setting. It is equivalent to ~(~...”) with a rest
synbol for each of the voices, but nore convenient for use with
chords.

exanpl e C(EG BC) *; C(EG BQ) 7,
related words ~ VA CES ;
further information

Ay is equivalent to EVERY; A, but it does not change the
current voice setting. It has the effect of » on each voice in
t he range of voices set with VO CES

mar k end of bar

| represents a bar line. Bar lines are used only to check the
l ength of bars (detecting extra or missing itens) and have no
effect on the nusic.

Their use is entirely optional. For full scores translated from
witten nusic with bar lines, and nusic with many basic length
changes, they are usually worth using. For sinple tunes and
nmusi ¢ conposed directly into AMPLE, they are usually best |eft
out.

118

The first bar starts with the SCORE, so there should be no bar
line before it. Bar lines are placed at regular intervals

t hroughout the part, the last one going at the end but before
any extra rest you have added to finish the final note.

BAR sets the desired bar length, and if a bar line finds that
the total of lengths since the last bar line or SCORE is
different fromthis, then it gives the 'Bad bar' error

If the bar length is set to zero, lengths are still totalled but
checking is disabled. |If you are trying out extracts at the
keyboard by cursor-copying inconplete bars, you should set 0 BAR
to avoid unwanted bar errors.

SCORE sets the bar length to zero, so you nust use BAR if bar
checking is required.

exanpl es SCORE 48, 4 BAR CE F c | % ok
SCORE 48, 4 BAR C E D | % gi ves ' Bad bar’
SCORE 0 BAR CED| % not faulted

rel ated words BAR

/\ t (0) (3 play note with ascending pitch

The letters "A to 'G play notes of their respective pitches
above the previous pitch.

AMPLE music notation uses the letters A-Gto represent note
pitches of the same nanmes (the white keys on a piano keyboard).
I n upper-case (A-GQG, the letter plays that pitch above the | ast
pitch, and in lower-case (a-g), it plays the pitch below. The
exception is that a repeated letter (wWith the same case) always
pl ays the sane pitch

This effect allow a phrase of nusic to be witten using note
letters without octave indications: each note's pitch is up or
down fromthe previous one, depending on its case. The octave
pitch of the whole phrase is set with a single ':' at the start.
For intervals greater than an octave, '!' causes an extra octave
junp on the follow ng note.

The note takes as its length the basic length (set with ',")
t hough you can extend it with the hold synbol (/).

The '+ (sharp) and '—' (flat) synbols nodify the pitch of the

following note by one senmitone. A key signature (K(...)K
containing a list of sharpened or flattened notes) nodifies al

119

uses of particular note letters, except those that have a '+, '-
or '=' (natural) synbol on them @transposes all note pitches by
a specified nunber of senmnitones.

Notes normally play on the current rnusic voice (set by ;), but
i nside chord brackets ((...)), they play on successive voices
starting on the current nusic voice. Chord brackets also set
the length to zero tenporarily, so the notes start at the sane
tinme.

exanpl es
CDEFGAB" % rising scale
Chagf edc” % falling scale
ceeen % r epeat ed note
cCcCcCclC % al ternating octaves

CCDbCD EEFedc DcbCh % pitch sequence of phrase of
% ' God Save the Queen'

related words ! : + — = K(@~
further information

The length of the note is added to the bar's total of note
| engths for checking by the next bar |ine.

Al so, see '('.

Each note letter word calls the player's current nusic action
list, passing the follow ng stack frane:

description val ue val ue def aul t
(if normal) (if after ~) destination
pitch voice event voice event voice VA CE
pitch calculated pitch calculated pitch Pl TCH
| evel voice event voice OFF VA CE
| evel calcul ated level calculated |Ievel VEL
gat e voice event voice OFF VA CE
gate ON ON GATE
duration "," setting "," setting DURATI ON

On return fromthe action list, it executes EVERY VOCE to return
the voice selection to a defined state

120

a t (0) EJ play note with descending pitch

The letters "a' to 'g" play notes of their respective pitches
bel ow t he previous pitch

See '"Ato G for nore infornation

/\(:1- execute nusic action

see text

ACT calls the next in the player's chain of nusic actions. It is
may be used inside ACT(...)ACT in the definition of a nusic
action to nodify the interpretation of nmusic events, or outside
ACT(...)ACT to call the mnmusic action chain to generate nusic
events directly.

ACT accepts a seven-nunber description of the nmusic event in a
stack frane

dur gate gatev level levelv pitch pitch FRAVE ACT ->
dur gate gatev level levelv pitch pitch FRAVE

When the nusic action chain is enpty (that is, no actions are in
use) ACT calls the following "term nating' routine to feed the
seven nunbers (the action variables) to the standard 'nusic

pl ayi ng' sound words that are provided for all voice types:

7 FCOPY
% duration gate gatevoice level |evelvoice pitch pitchvoice -> 0
VA CE PI TCH

VA CE VEL

VO CE GATE

DURATI ON

Separate voice settings for each sound event allow each sound
event to be sent to the destination voice or disabled (with OFF
VO CE) as required by that nusic event.

ACT(...)ACT supplies the action variables for any ACT incl uded
in the sequence, for exanple:

ACT(ACT)ACT

In contrast, where ACT is used in the main program the program
nmust supply the variables for exanple:

48 ON1 641 0 1 FRAME ACT
#2 H#H2 #2 #2 #2 #2 #2

121

This will play a note with pitch 0, level 64, and duration 48.

When the nusic action chain has one or nore itens on it, each ACT
instruction calls the action that is next in the chain fromits
own position. Successive actions use ACT to pass control along
the chain, until in the last action, ACT calls the terninating
routi ne as descri bed above. Each ACT enters the next action at
the first instruction after ACT(, and is returned to when the
action reaches)ACT. For exanple, with one action in the chain,
control follows this course

ACT ... % mai n program

ACT(... ACT ...)ACT % nusi c action

term nating
routine

Sone actions may deliberately not include an ACT, thereby ending
the event's interpretation as an alternative to the standard
termnating routine. Qhers may call ACT nore than once so that a
single input nusic event is interpreted as two or nore out put
nmusi c events — to create an echo, for exanple.

Actions nay read and wite the action variables in their stack
frame using FVAR as nor nal

function sound word
1 FVAR pitch voice VA CE
2 FVAR pi tch Pl TCH
3 FVAR | evel voice VA CE
4 FVAR | evel VEL
5 FVAR gate voice VA CE
6 FVAR gate GATE
7 FVAR duration DURATI ON
Many actions read the action variables to control additiona

out put (possibly through ACT or direct sound words), and/or wite
themto alter the results of the termi nating routine and
down-chain (later) actions. Actions normally preserve the action
variabl es, copying themfirst with FCOPY if they need to pass
nodi fied values to ACT. Ohers nay change the original val ues,
either to send results back to the previous actions or main
program or sinply to maxi nise speed by not copying, accepting
that this nmight affect the operation of any up-chain (earlier)
action that expected values to be preserved.

122

ACT is the originator of all nusic events, whether from Nucl eus
nmusi ¢ event words, user progranms, or additional nodul e functions
including real -time nusic event generators such as a nusic
keyboard and other input devices. Real-tinme nusic events differ
fromother ('advance') nusic events only in their use of the
duration variable (7 FVAR), which sends the duration of the
previous event (calculated fromQIIME), in arrears. Sinple action
definitions are entirely conpatible with real-tinme events, but
because real -tine events always operate 'behind tinme', definitions
that use DURATION or other than a single ACT require
re-arrangenent.

exanpl es
"randn" [% play random pitch notes using any effects available

READY 1 VO CES i nst runent
% add any mnusic action effects here

REP(

48 % dur ati on

N 1 % gat e and voi ce

0 OFF % no level (sent to 0 VA CE)
12 RANDL 1 % pitch and voice

FRAMVE ACT % execut e

#2 H#2 #2 #2 #2 #2 #2

) REP]

"randn" [% alternative
READY 1 VO CES i nst runent
% add any rnusic action effects here

48 % durati on

N 1 % gat e and voi ce

0 OFF % no level (sent to 0 VO CE)

01 % pitch and voice

FRANVE

REP(

12 RANDL 2 FVAR #! % set pitch

ACT % execut e (assum ng preservation)
) REP]

"noop" [

20 ACT(ACT)ACT] % basic 'no effect' action
"sink" [20 ACT()ACT] % throws all music events away
"repeat" [% duplicates each nusic event

20 ACT(

ACT %do it

ACT % do it (including duration) again
)ACT]

123

"mon" [%action nonitor — print variables on each event

30 ACT(

" v pitch v level v gate duration”

$OUT NL % print |egend

7 FOR(COUNT FVAR #? % get each action variable

$STR 4 $PAD $QUT % and print (in field of four)

) FOR NL

ACT % continue with the event as norna
)ACT]
SCORE non
C % prints

& v pitch v level v gate duration
% 1 0 1 64 1 -1 48

rel ated words ACT(FRAME
further information

The standard set of seven action variables is not a feature of ACT
itself, but nerely of the Nucl eus standard termninating routine and
nmusi ¢ event generators. The user can easily inplenment an
alternative mnmusic event standard, possibly with nore val ues for
greater control, having its own nusic event generators and

term nating routine, and/or actions to convert to and from Nucl eus
standard nusic events.

/\(:1-(start nusic action sequence [1 only
posi ti onnunber ACT(

ACT(...)ACT defines a nusic action. It either adds the encl osed
sequence to the player's music action chain at the position
specified, or, if the position is zero, it renpves the action from
t he chai n.

ACT(is used to set a sequence of instructions to be carried out on
each music event (note, hit, rest, or tie), and hence to redefine
the interpretati on of nusic events.

VWhen the nusic action chain is called, control passes to the first
action in the chain, entering at the first instruction after ACT(.
Control returns to the calling routine when)ACT is reached. The
sequence nay call the next in the chain through the word ACT.

Posi tion nunbers between 1 and 127 determine where in the chain
the action is placed — a | ow nunber goes before a hi gher nunber
Where there are two actions with the sane position nunber, the
nost-recently selected is placed first. Each action can only be
i ncl uded once in each player's chain — on inserting it a second

124

time, the first is renpved. Position nunber O renpves the action
from the chain.

A convention applies to the choice of position nunber for action
that need to be conpatible with others for sinultaneous use. Most
action definitions fall in to one of three classes, each of which
has a single position nunber assigned by the convention

position class type of exanpl e

nunber processi ng

10 early score set transpose to pitch of note
20 m ddl e nmusic generate echoes of each event
30 late sound change sound dependi ng on pitch

Score processing actions set or respond to nusic environnent
variabl es, and include those that redefine nusic event words for
not ati onal purposes. Such sequences often use musi c environnent
words to set, and MVAL? to respond. If the nornal ACT is left
out of the sequence, events will not play. A tenporary action
may turn itself off with a self-reference once it has conpl et ed.

Musi ¢ processing actions respond to and i ssue standard mnusic
events to perform operations such as expansion, both on the sane
voi ce, for exanple converting single notes to sequences, and on
ot her voices, for exanple playing true echoes or parallel voices.
They use ACT both directly, and indirectly through nusic events
words included in the action sequence itself.

Sound processing actions use sound words (including voice-type
specific ones) to control voices directly, with or w thout

i nvoki ng the default interpretation through ACT. Exanples

i nclude articulations, automatic panning, pitch slides etc.
Sequences often read the action variables (with FVAR) to
determ ne the type of event and set the voice for sound words.

exanpl es
% fixed pitch: all letters play on 0: (4-oct range using !)
IlfiXII [
10 ACT(% early (for score processing)
ACT % do event as nornal
0: % then set octave for next note
) ACT
0:] % set octave for first letter after 'fix'.

SCORE fix CDEFGAB! CBAGFEDC" % up- and- down scale in O

% alternative, with control flag
"fix" [%flag fix

125

% ON fix -> fixed pitch node
% OFF fix -> normal pitch node

10

AND %10 if ON, O if OFF

ACT(ACT 0:)ACT %all events do 0: for the next one
0:] % for the very first event

"macro" [% expand each note to a sequence on that pitch

20 ACT(% m ddl e (for nusic processing)
MVAL? % save musi ¢ envi ronnment
2 FVAR #? @ % set transpose to pitch
0: CCGCG % play riff (using global ',")
MVAL! % restore rusi c environment
)ACT]
SCORE macro
48, CD % pl ays 48, CCGG ddAA
12, CFFggCC

"dance" [% set random stereo pan on each event
% (for voice types that have PAN)

30 ACT(% late (for sound processing)
1 VA CE % sel ect voice (
6 RANDL 3 #- PAN % set random pan
ACT % execut e event as nornal

) ACT]

SCORE dance 12, CCCCCCCC

"dance" [% i nproved version which selects voice and
% only acts on ON GATEs, i.e., notes/hits

30 ACT(% late (for sound processing)
5 FVAR #? % get gate voice: OFF, 1, 2, 3 etc
6 FVAR #7? % get gate value: OFF or ON
AND % voi ce nunmber if ON GATE,
VA CE % OFF if OFF GATE/ no gate
6 RANDL 3 #- PAN % set pan (no effect if OFF VA CE)
ACT) ACT % al ways execute event as nornal
]
SCORE dance

12, cvyeareerrealrn

% phrasing — slurs every note in a contiguous note sequence
"prevgat e" [GVAR]

"phrase" [
20 ACT(
5 FVAR #? | F(%if gate present (gatevoice <> OFF)
6 FVAR #? | F(%if gate ON
prevgate #? % if previous gate was ON
IF(OFF 5 FVAR #! % set this gate OFF
I F
I F

126

6 FVAR #7? prevgate #! %record for next

)IF
ACT) ACT
OFF prevgate #!] %initialise
SCORE phrase 24, % use instru with peak AND sustain
aBCDEdc” Dcb”™Cha® % three separate phrases

% phrase mark instruction for use with 'phrase' above

"ph" [OFF prevgate #!] % force phrase start (w thout rest)

SCORE phrase 24, % phrasi ng as before, but

aBCDEdc/ ph Dcb/ ph Cbha/ » %w thout rests between phrases
related words ACT FVAR VO CE! FRAME SI MPLEACT

further information

An instance of ACT(...)ACT is known as an action structure, and
the instructions it encloses as an action sequence.

An action structure may be used inside an action sequence itself,
for exanpl e:

% tran instruction: transpose to pitch of next letter

"tranact" [] % null defn for self-reference
"tranact" [%flag tranact
10 AND ACT(% early action, controlled by flag
2 FVAR #? @ % set transposition to pitch
OFF tranact % renove nusi c action
)ACT]
"tran" [
0@ % cancel transposition
ON tranact] % turn on rusic action
tran 0:-b ... % transpose C -> -b
tran 1: C % transpose C->1! C (up octave)
tran 0:C % cancel transposition
) ACT end mnusic action sequence [1 only
ACT(...)ACT defines a nusic action. See ACT(.

ALI G\I ensure text cursor is at start or line

ALI GN makes sure that the text cursor is at the beginning of a
line, that is, in colum zero « |If the cursor is not in colum
zero already, ALIGN noves it to the start of the next |ine by
printing a carriage return/line feed.

127

exanpl e ALIGN "Enter pos:" $OUT % put pronpt at line start

rel ated words NL

AI\/PL E restart system conmmand

The conmand AMPLE restarts the system clearing the programto
nmake ready for entry of a new program The rest of the input line is
i gnor ed.

It also renbves P and T nodules, QU Ts the editor and checks that
the Nucl eus ROMinmage is conplete, issuing the '! Bad ROM error
if not. F nodules are retained.

further information

The AMPLE command al so selects and initialises the tine-server
wi th the al phabetically |atest nane.

AND AND bits of nunbers

nunber 1 nunber2 AND -> ANDnunber (nunberl1l AND nunber 2)

AND performnms the [ogical AND operation on the bit patterns of
the two nunbers. Each bit inthe result is only 1 if both
corresponding bits in the input nunbers are 1

AND i s used both as a bit-wi se operator for manipulating bit
patterns, and as a |ogical operator for flags:

bitl bit2 bit3 flagl flag2 flag3
0 0 0 OFF OFF OFF
0 1 0 OFF ON OFF
1 0 0 ON OFF OFF
1 1 1 ON ON ON
exanpl e

&1234 &FF AND pr oduces &34
in binary:
0001001000110100 AND
00000000111111211
produces 0000000000110100

#11 0 #> #12 5 #< AND % nunber -> ON if 1<=n<=4, else OFF

128

related words OR XOR NOT

ARRAY access array el ement

el ement nunmber baseaddr essnunmber ARRAY -> addr essnunber

ARRAY is used in the definition of arrays. It is usually used
after DIM which reserves store fromprogramnmenory, in a word
definition which serves to give a nane to the array.

"totals" [10 DI M ARRAY]
| |
array nane |
maxi mum el ement nunber (nunber of elenments is 11)

The array el enents are nunbered 0 to the nunber specified,
though you will often | eave O unused. Array elenments are stored
to (set) and fetched from (read) by #! and #?. The array

el ement nunber goes i mMmediately before the array nane.

As an alternative to standard arrays, which take a single
argument, it is possible to create internally indexed arrays
that take no argunents and are used |ike variables, and nultiply
i ndexed arrays which take two or nore argunments. In these

cases, the single elenment nunber required by ARRAY is provided
by additional instructions added at the start of the standard
array definition.

exanpl es
"values" [20 DI M ARRAY]
0 1 values #! % store O in element 1
3 val ues #? NOUT % print element 3

% 10 x 10 array
"matrix" [%col row matrix -> address

1 #- 10 #* #+ % el ement = (row 1)*10 + col
100 DI M ARRAY] % col row matrix -> address
% print matrix

10 FOR(COUNT % col um | oop

10 FOR(% row | oop

#11 COUNT matrix #? NOUT SP % use col unm nunber on stack

) FOR #2 NL % di scard col umm nunber
) FOR
"plvar" [% plvar -> address % pl ayer -1 ocal variable
PNUM % i ndex is player numnber

10 DI M ARRAY] % normal array definition

129

0 plvar 1! % used |ike normal variable
% but is independent for

pl var #? NOUT % each pl ayer

"crazy" | % random shuffl er!

8 RANDL % random i ndex val ue

8 DI M ARRAY] % normal array definition

related words DI M#! #? #+! #Bl #B?
further information
ARRAY perforns the foll ow ng:

1 Converts the el enent nunber into the | ocation address
2 Checks that the address is in range

ARRAY is sonetimes worth using where only a DIMis required,
nerely for its range checking function. It can later be renoved
for speed when the programis fully tested.

Any arrays created by a programrenain in existence until
di scarded by those commands that stop any programthat is executing,
that is, COWPACT, SAVE, LOAD, NEWetc

/\ES(: convert character to nunber [1 only
string ASC -> asciinunber

ASC converts a character into its ASCIlI code, a nunber. |If the

string is longer than one character, the trailing characters are

ignored. If the string is a null string, ASC returns -1.

exanpl es

"A" ASC produces 65
c % string on stack
1 $- ASC #11 $CHR $+ % find ASC but retain
% string and nunber on stack

rel ated words $CHR

130

##EB! store | ow byte of nunmber at address
dat anunber addressnunber #BI!

#B! stores a single byte (the |Iow byte of the nunber) at the
address. #B! is often used with single-byte arrays.

It will operate on any address and should therefore be used with
care to avoid corrupting nmenory.

exanpl es
1 &8E #B! % store 0 at |ocation &E
O buffer 3 #+ #B! % store 0 at buffer+3
related words #B? #! #? DIM
further information

Two- byte values are stored with the | ow byte at the address and
the high byte at the address plus one, for exanple:

1 xvar #B! % store 1 in |low byte of variable xvar
0 xvar 1 #+ #B! % store 0 in high byte of xvar

#BlZ swap high and [ow bytes of nunber
nunber 1 #B12 -> nunber?2

#B12 swaps the high and | ow bytes of the nunber. It is used for
byt e- processi ng operations.

It can be used as a fast '256 #*' (placing the top byte) and an
unsi gned ' 256 #/ #2' (extracting the top byte — not possible with
the signed #/). These operations are useful with CODE, that uses
the high and | ow bytes of nunbers independently.

exanpl es
&1234 #B12 goes to &3412
... CODE % YX PA two nunber returned by code
#2 % YX

#11 #B12 &FF AND % YX y
#12 &F AND %Y X Y and X as separate nunbers

131

#B’) fetch byte from address
addr essnunber #B? -> dat anunber

#B? fetches the byte fromthe address. The nunber has the fetched
byte as the |l ow byte, and the high byte is zero. #B? is often
used with single-byte arrays.

exanpl es
&8E #B? % fetch and print byte as &8E
val ue 1 #+ #B? % fetch high byte of word at 'val ue

rel ated words #B! #! #? DM
further information

Two- byte values are stored with the | ow byte at the address and
the high byte at the address plus one. #B? can be used to extract
the separate byte froma variable

var #B? % fetch | ow byte
var 1 1+ #B? % fetch high byte

EB/\FQ set bar length

beat snunber BAR

BAR sets the bar length in beats. The beat is usually specified
bef orehand with a I ength setting, so the two act as a tine
signature: the length setting has the function of the bottom
nunber, and the BAR setting is the top nunber. Only the total bar
length is inportant — the nunber and | ength of beat have no
additional effect.

After a BAR setting, if any bar in the nusic does not add-up to
the sane total length, the 'Bad bar' error is issued at the bar
l'ine.

Wth the bar length set to 0, the checking action of bar lines is
di sabl ed. SCORE does a 0 BAR, so you nust make a BAR setting if
you want bar |length to be checked.

The BAR setting has no effect on the sound of the nusic.

See | for nore infornmation

exanpl es

48, 4 BAR % 4/4 (4 crotchets per bar)

132

92, 2 BAR %2/2 (2 minins per bar), sanme effect as 48, 4 BAR
24, 5 BAR %5/8 (5 quavers per bar)

rel ated words |

further information

BAR may be used at any point in the nusic, for exanple, for a new

time signature. BAR does not interfere with length totalling — a
new setting can only take effect at the next bar |ine.

CLEAR clear editor data comand

CLEAR clears the public editor data, freeing the nmenory for
re-use. It is used to clear the data before entering new data or
saving the program After CLEAR, SHOW shows 'no data'.

Editors that use private data storage, rather than public, replace
t he Nucl eus CLEAR command with one of their own while sel ected.
This clears the editor's private data, and has no effect on public
data. QUIT exits the editor, reinstating the Nucl eus CLEAR

&CHR convert nunber to character [1 only
asci i nunber $CHR -> string

$CHR converts the nunber to the corresponding ASCI| one-character

string. |If the nunber is negative, a null string is produced.

Val ues between 0 and 255 are al |l owed.

$CHR is often used in assenbling strings fromnunbers, and in
particular, for putting control codes in strings.

exanpl es

65 $CHR produces "A

13 $CHR produces "<cr>" (carriage return>

-1 $CHR produces "" (null string)

"instant" [%Kkey press -> command, e.g. A-g and a-g play notes
"instant" $+ % return to this word when done

#I N $CHR % get key and convert code to string

$+ % add on to command |ine

0,] % meke all notes i mediate

READY 1 VO CES i nst runent

i nst ant

133

CODE cal |l nachi ne-code routine

YXnunber CAnunber addressnumber CODE -> YXnunber PAnunber

CODE cal I's the nachine code routine at the address given, and
returns control when the routine exits by RTS. It takes two
nunbers to set the processor registers on entry (YX and CA), and
returns two nunbers (YX and PA) with the register contents on
exit:

On entry On exit

A low byte of CA A low byte of PA

C bit 8 of CA P high byte of PA
Y high byte of YX Y high byte of YX
X low byte of YX X low byte of YX

CODE may be used for calling operating system and user routines.
Where a data block is required, nenory can be reserved for it with
DIM - see DIMfor details.
exanpl es

1 15 &FFF4 CODE #2 #2 % *FX15,1 flush input buffer

"FX' [% YXnunber CAnunber FX
&FFF4 CODE #2 #2]

115 FX % flush input buffer
further information

User routines may be accommodated in unused operating system
wor kspace, ROM or nenory reserved with DIM

Zero page locations &E and &8F are avail able for use by user
routines.

The routine is entered with the I, D and B flags clear.

COVPACT conpact unused nenory conmmand

COWPACT arranges unused nmenory space into one contiguous area,
making it fully available for use.

In general use, the space freed by del eted words and other itens
can be left in isolated pieces which are too snall for re-use.
When this happens, an operation may fail with the '"No room error
when there is in fact enough space in total, particularly when
only a small anount of user nenory is free. |In this event, you

134

may enter COVPACT and re-try the operation that gave the error.
See MEM for gui dance on nmenory econony.

On conput er nodel s without shadow RAM you can also get a 'No
room error when changing to a | ower-nunbered screen node (node 7
to node 3, for exanple) since this incurs a reduction in the
amount of |anguage nenory. |f this happens, use COWPACT and try
agai n.

rel ated words MODE NMEM
further information

COWPACT stops players 1-10 and all sounds, and resets player 0's
musi ¢ action chain.

Prograns are saved in a conpacted state, so imedi ately after SAVE
or LOAD, the free nmenory is conpacted. This means that you can

i nclude a MODE change in a program and be sure that you won't get
a needl ess 'No roomi when it is LOADed and RUN.

CQH\” return | oop count [1 only

COUNT -> nunber

COUNT | eaves the | oop count of the nost recent FOR(...)FOR | oop
containing it. The count starts at one and increases by one each
time around the loop. On the last tine around, it is equal to the
nunmber given to FOR(

COUNT lets the instructions inside the | oop do sonething different
on each pass, usually sequencing through a particul ar range of
val ues.

The COUNT can be put anywhere inside the FOR(...)FOR | oop,
except enclosed in a separate word ([...]) or intervening
P(...)P structure.

exanpl es

"countup" [% print nunbers from1l up to 20
20 FOR(COUNT NOUT SP)FOR NL]

"timestab" [%print 10x10 tinmes table
10 FOR(COUNT 9% get y count
10 FOR(
#11 % copy y count
COUNT #* % cal culate x * vy
$STR 4 $PAD $QUT Y% print infield of 4

135

) FOR

#2 % di scard y count
NL % print new line for next row
) FOR]

rel ated words FOR(| NDEX
further information

COUNT counts up whereas | NDEX counts down. |INDEX is slightly
faster in execution than COUNT.

DEL ETE del ete word conmand

nanmestri ng DELETE

DELETE renoves the naned user word, freeing its space for re-use
It should be used with care as its action cannot be reversed.

If the user word is in use by any word, it is not deleted and the
"In use' error is given. FIND can be used to |ocate the uses of
t he word.

exanpl e "ol dword" DELETE
further information

DELETE stops players 1-10 and all sounds, and resets player 0's
musi ¢ action chain.

To delete a self-referencing word, you nust first redefine it to a
non-sel f-referenci ng version, such as an enpty definition: []
For exanpl e:

% fact " DELETE
I In use %fails due to use inside itself
Wfact" [] % r edefi ned, |eaving fact unused by any word
% fact" DELETE % succeeds
%

If you press BREAK whil e DELETE is operating, the program nay be
left in an internedi ate unexecutable state, but it will be
restored on saving.

When short of free nmenory, you should use COVPACT to nmake best use
of the nenory freed by DELETE

136

DI M reserve nenory

si zenunber DI M -> addr essnunber

DI Mreserves a specified anount of nmenory for data storage by the
program and | eaves the address of the first location. It is
often used with ARRAY to define an array, in which case the nunber
before DIMis the nmaxi mum array el ement nunber (see ARRAY for

det ail s)

DI M can al so be used without ARRAY, |eaving the user to address
the menory directly. The DIMinstruction is included in a sinple
definition which serves to give the nenory block a name. The

bl ock is (sizenunber+1)*2 bytes in size, that is, |ocations
"addressnunber' to 'addressnunber+sizenunber*2+1' inclusive. The
definition can also carry out additional address cal cul ations,
using input values if required. Hence the user can create custom
storage words for various functions including single byte arrays,
faster access store, specially-indexed arrays, string variables,
operating systeminter face control blocks and nany others.

Note that it is the user's responsibility to check addresses

agai nst the bounds of the DIMblock, if required. Checking can be
included in the DIMdefinition, and then renoved to increase speed
and free nenory when the programis conplete and tested.

READY cl ears records of all nenory reserved with DIM so the first
use of a DIMinstruction after READY reserves nenory afresh, not
necessarily at the sane address as previously. It is good
practice to include READY at the start of any programthat uses DM
exanpl es

"list" [10 DM ARRAY | %array with elements 0 to 10

"chars" [% el enment nunber chars -> addressnunber

4 DI M+] % byte array with elenents 0-9

65 0 chars #B! % set elenent 0 to 65

0 chars #B? NOUT % print element O

"chars" [% el enment nunber chars -> addressnunber

1 #+ 4 DM #+] % alternative with el enents nunbered 1-10
"chars" [% bounds- checki ng version

#11 0 #< % | ess than 07?

#212 9 #> R % or greater than 9?

I F(

"I'l bad el ement in chars"$OUT

137

STOP) IF % print message and stop, or

4 DIM #+] % DI M as nor nal
"check" [% offset sizenum nanmestring -> offset sizenum
#2121 % wor ki ng copi es of offset and sizenum
#11 #+ % rom si zenum . . .
1 #+ % cal cul ate max byte el enent
#212 #< % | ess than supplied el enent?
#12 SIGN % negat i ve?
ORIF("!'! bad el enent ("$OUT

#12 NOUT % print el ement no.

") in "$OUT

$QUT STOP % print supplied nane

)IF
$2] % di scard supplied nane
"chars" |
4
"chars” check
DIM 1 #+]
"$!" [%string addressnunber $!
LEN #212 #B! % store length
LEN FOR(% for each character..

1 #+ % next | ocation

1 $- ASC #212 #B! % store character, |eaving renai nder
) FOR
$2 #2] % di scard null string and address
"$?" [% addressnunber $? -> string
#11 #B? % fetch length
FOR(1 #+ % next | ocation

#11 #B? % get character
$CHR $+ % add to string start
) FOR
#2 % drop address
$SREV] %turn string right way around
"$var" [63 DIM] % define string variable
$IN $ var $! %store (inside [])
$var $? $QUT %fetch (inside [])

rel ated words ARRAY #! #7? #+! #B! #B?
further information
The first tine the DIMinstruction is executed, it finds and

reserves the nenory, and subsequently it ignores the size nunber
If the size is less than zero, a value of zero is used. The

138

maxi mum si ze nunber allowed is 16383.

DI Mtakes nmenory fromthe programarea, and its consunption is
shown by MEM The record of DIMnenory is cleared by any comand
that rearranges nenory space, including any that noves or renoves
user words. The first subsequent use of a DIMinstruction
reserves nmenory afresh, not necessarily at the same address.

The structure of the user-accessible part of the nenory block is
as foll ows:

Nunber of elenents in array : elenent 1 : elenment 2 ...

| | |
At address-2 At address At address+2

DI M consunes (sizenunber+5)*2 bytes of nenory — this includes 8
bytes of system i nformation.

VWhere a DK block is accessed fromonly one point in the program
the DIMinstruction may be used in-line, unnaned. The follow ng

exanple is a word to open a sequential file, using an in-line DIM
to provide a control block holding the file nane:

"fopen" [filenanmestring opnunber fopen -> channel nunber

10 DIM % 22-byte bl ock
#11 %
LEN % string | ength
21 MN %limted to 21 as precaution
FOR(

1 $- ASC #212 #B! % nmove character to buffer

1 #+)FOR % i ncrement address
$2 % di scard renai nder string
13 #12 #B! % store carriage return at end
#12 % | eaves: bl ockaddress opnunber
&FFCE % OSFI ND entry address
% YX(bl ockaddress) A(opnunber) entryaddress
CODE % | eaves: YX PA
#12 #2 % | eaves PA
&FF AND] % | eaves A (channel nunber)
"infile" &40 fopen ... % open for input (inside [])
"outfile" &80 fopen ... % open for output (inside [])
"tenfile" &CO fopen ... % open for update (inside [])

139

[)I E;F)L_/\\/ di spl ay text

DI SPLAY prints the following Ilines of text on the screen. The
text lines nust start with % (naking theminto comments), and

DI SPLAY stops at the first line not starting with % or at the end
of the word

DI SPLAY is used as a convenient nmethod to print fixed text, for
exanple, the title of a piece, or a page of instructions.

rel ated words % $OUT
exanpl es
"title" [DI SPLAY

% ' Shar ds'

% by

% John Favero
% Novenber '87
%

]

"pagel” [DI SPLAY
%

text for page 1 ..
%

page2]|

DLJRATI O\Iwait for a period of tine

nunber DURATI ON

DURATI ON rmakes the specified nunber of tinebase ticks el apse
before the player’s sound continues. It is used to nmake a sound
play for a certain period of tine by delaying the onset of the
next sound.

Misi ¢ event words generate their own duration (fromtheir length
setting), so DURATION is usually confined to additional effects in
nmusi ¢ notation, such as extra delays that do not contribute to bar
| ength, and use in prograns which enpl oy sound words directly,

i ncl udi ng nusi c action definitions.

The nunber nust be in the range -32768 to 32767. Wth the norna

ti mebase period, each unit corresponds to 10 nilliseconds. =T
all ows the actual duration of the tick to be changed.

140

exanpl es

"fermata" [80 DURATION] wait for 80 ticks
"partl" [
SCORE 24, 3 BAR

12, ADf/ ed |

D//1] fermata | %hold last note (with bar |Iength as normal)
0,"]

"part1l" [SCORE 48, 4 BAR % bass drum

4 FOR(

8 FOR(XXXX | XXXX |)YFOR %crotchet beat for reference
JFOR]

"part2" [SCORE 48, 4 BAR % snare drum

3 DURATI ON % put behind (after) the beat

8 FOR(/XIX | IXX |)FOR

-3 DURATI ON % put back on the beat

8 FOR(/XIX | IXIX |)FOR

-3 DURATI ON % put in front of (before) the beat
8 FOR(/XIX | IXIX |)FOR

3 DURATI ON % put back on the beat

8 FOR(/XIX | IXX | YFOR]
% play partl & part2 together

"metronome” [% strike (existing) voice every 20 ticks

REP(
1 VO CE QN GATE % strike
20 DURATI ON % wait 20 before next
) REP]
"tal kback" [
READY 1 VO CES ins %'ins' to suit installation
REP(
16 FOR(
12 RANDL 24 #+ PITCH ON GATE
10 DURATI ON % r epeat ed short
) FOR
OFF GATE
100 DURATI ON % single | ong
4 FOR(
12 RANDL 24 1- PITCH ON GATE
40 DURATI ON % r epeat ed nedi um
) FOR
OFF GATE
20 DURATI ON % si ngl e short
) REP]

related words QIlIMe =T

141

further information

DURATI ON adds the given nunber to the player's programti e,
novi ng forwards or backwards, possibly passing over sound events

i ssued previously. The practical linmt on backwards novenent is
the total queue tinme itself, returned by QIIME. Under norna

condi tions, the queue time before reduction by negative durations
is determ ned by the total queue capacity, which is 220 events for
all players.

A player's tine begins to pass at the instant its P sequence begins
or in the case of player 0, when the comrand |ine begins

execution, and continues regardl ess of whether durations are sent.
If the player has sent nothing for a long tine, durations will be
consuned rapidly to nake up this lost time, ensuring that the
tenporary hol d-up does not cause a permanent error and | oss of
synchroni sation with other players.

In sone situations, the player needs to start tinme afresh after
sendi ng no durations for atine. An exanple is a programthat
waits until a key press before playing a short tune. To ensure
that the tune starts on tinme, the player sends a duration equal to
the tine that has passed,. as foll ows:

Qrl ME % read queue tinme — should be negative
0 #l 2 #- % negat e
DURATI ON % send at duration to nake QIIME up to zero

Here is an inproved version that also will not cause overlap on an
unfini shed previous tune:

"makeup" [% nmake-up lost tine to start afresh
0 QTl ME #-

0 MAX

DURATI ON]

It is used before the start of the tune, for exanple

"keypl ay” [

REP(#I N #2 % wait for key
makeup % nmake up lost tine
SCORE 12, gABCDcbag” % pl ay tune

) REP

The contrasting type of programin which occasional user input
af fects nmusic that runs continuously, can also use QIl ME — see
Qrl Me for details.

142

) ELSE(separate conditional sections [T only

JELSE(is used inside IF(...)IF to introduce a sequence of words
that is done if the tested flag is OFF.

See I F(for nore information.

EVERY | eave 'every' sel ector

EVERY is a constant for use with various selecting words, where it
sel ects every one of the itens together. For exanple, EVERY VO CE
selects all voices in the current voice range, set by VO CES.
EVERY | eaves the value -1, and is equivalent to ON

related words VO CE ; ON
FAST sel ect fast/normal tenpo
flag FAST
FAST control s whether rnusical tinme passes normally, or runs as
fast as the programw Il go. ON FAST selects fast execution, and

OFF FAST returns to nornal.

FAST can be used to skip over sections of nusic, or run through
t he whol e piece at top speed to test for errors such as 'Bad bar'.

further information
Unli ke WND, ON FAST nmakes tinme pass only as fast as the program

can run, ensuring that the players remain in synchronisation while
runni ng fast.

FCODY copy nunbers from franme pointer

nunber -> nunber 1 ... nunber-n
FCOPY copi es the specified nunber of nunbers from underneath the
FRAME pointer to the top of the stack, preserving the order. It
is used to access groups of nunbers w thout destroying them
FCOPY is much faster than the equival ent FOR/ FVAR i nstruction
sequence.
exanpl es

3 FCOPY % copy 3 nunbers from FRAME

2 4 6 FRAME % | eave three nunbers, marked wth FRAME

143

8 10 % add some nore on top

3 FCOPY % copy 3 to top
NOUT % prints 6
NCUT Y% prints 4
NCUT % prints 2
% leaves: 2 4 6 8 10

"dump" [% nunber dunp ->
% print top n nunmbers (not inc n!), going down

FRANVE % mar k
#11 1 #+ FCOPY % copy n nunbers AND n itself
FOR(NOUT SP) FOR % print n nunbers
#2] % di scard n
112358 6 dunp %prints 853211
%leaves: 1 12 358
rel ated words FRAME
FI NDfind uses of word conmmand

nanmestring FI ND

FI ND di spl ays the nanmes of all words which use the specified word.
The specified word can be a systemor user word, and nodul e words
with readabl e definitions also searched. FIND is useful for
finding where a particular user word is used in the program and
di splaying a list of all words of a certain type, for exanple all
i nstrunments, by searching for a key word.

The list of finds is given in groups: programand each nodul e.

exanpl es "riff1"FIND %find all uses of riffil
" SCORE" FI ND % find all uses of SCORE

rel ated words SHOW

FO:Q(start definite | oop [1 only
count nunber FOR(...)FOR

FOR(...)FOR carries out the instructions inside it the
specified nunmber of times. It is particularly used to repeat

nmusi cal sections.

If the nunber of repeats is less than one, the contents are not
executed at all. FOR(...)FOR can only be used inside words.

The words COUNT and | NDEX gi ve the nunber of executions done and
the nunber to be done, respectively.

144

exanpl es

"stars" [% nunber stars

FOR("*" $QUT)FOR]

5 stars % prints koK kK
0 stars % prints nothing

"pnout” [% nunber pnout %prints nunber in field of 8 stars

$STR % convert nunber to dec string form
8 LEN #- % cal cul ate how many stars needed
FOH("¢" $+)FOR % add themto start

$OUT] % print

42 pnout % prints FrREXXKXAD

phrasel % (in a word definition)

8 FOR(phrase2)FOR % phrase2 is done 8 tines

phrase3

SCORE -2: 8§, % (in a word definition)

4 FOR(CDEFGAB YFOR] %play a scale over four octaves

"tri" [%print triangular area

10 FOR(%on lines 1 to 10...
COUNT FOR("*"$QUT)FOR % print 1 to 10 stars
NL % next 1ine

)FOR]

tri

rel ated words COUNT | NDEX REP(

) FO:Q end definite | oop [1 only

FOR(...)FOR carries out the instructions inside it the
speci fied nunber of tines.

See FOR(for nore information.

FRAIVE set frame pointer to top of stack

FRAME mar ks the current top of the nunber stack as the start of a
stack franme which can then be accessed |ike an array, using FVAR
FRAME enabl es direct access to nunbers on the stack, so that the
stack can nore easily be used for tenporary storage of nore than
just a few nunbers.

The current FRAME val ue can be saved and restored with FRAME? and
FRAME! , allowi ng outer and inner |levels of a programto use FRAME

145

i ndependently. Misic events use FRAVE to mark nusic event val ues
on the stack, and therefore the FRAME val ue i s undefined over
nmusi ¢ events, so you should save and restore it around mnusic
events if the calling word needs it to be preserved.

exanpl es See FVAR

rel ated words FVAR FRAME? FRAME! FCORPY
FRAIVEI wite frane pointer
poi nt er nurber FRAME

FRAME! sets the stack frame pointer to the value supplied. It is
used to restore the pointer to the value read with FRAME?.

exanpl es See FVAR
rel ated words FRAVE FRAME? FVAR
FRAIVE’) read frane pointer

FRAME? -> poi nt er nunber
FRAME? reads the value of the stack frane pointer. It is used to
save the pointer value on the stack for later restoration by
FRAMVE
exanpl es See FVAR
rel ated words FRAVE FRAME! FVAR
FVAR access stack frame item

el enent nunber FVAR -> addr essnunber
FVAR is used to access the itenms in the stack frane nmarked by
FRAME as el enents of an array. It is used for convenient access
to tenporary values on the stack, and to access tenporary
vari abl e storage on the stack
It takes the el enent nunber and returns the address of it, for use
by #?, #!, #+!, #B? and #B! . The position of the top of the
stack when FRAME was used is el enent nunber 1.

exanpl es

FRAME 4 FVAR #? % #43214 — copy the fourth itemto the top

146

FRAME % non-destructive stack print
3 FOR(COUNT FVAR #?

NOUT SP % print the top 3 itens
) FOR % | eavi ng t hem unchanged
% et hod of random access to stack | ocation
0 % | eave one nunber on stack
FRAME % mark it for later access
% ot her operations, putting items on stack
1 FVAR #! % store value to variable
c % ot her operations
1 FVAR #? % read val ue fromvariabl e
"“.?" [%,? -> nunber %return ',' setting, from MVAL?
0 % dummy item for storage
MVAL? % seven itens, including ',' as no. 2
FRANVE % mar k
2 FVAR #? % get no. 2 out
8 FVAR 4! % and store over dunmy item
MVAL! % get rid of the MVAL? nunbers
] % | eaving result on stack
48, ,? NOUT % prints 48

"pitch" [1 FVAR] %define naned action vari abl es
"pitchv" [2 FVAR] % for clearer action definitions
"level" [3 FVAR] % (see ACT(

"dur” [7 FVAR]

rel ated words FRAVE FRAME! FRAME?

@ start players together

@O starts the players executing together, after allowing themtine
to prepare to play. It is only used in conbination with READY and
alist of P(...)P structures, usually in the '"RUN word of a

pi ece.

@GO cannot be used inside a player, and is used only once after
READY. Nornmally, there should be no DURATI ONs (or nusic events,
whi ch thensel ves use DURATI ON) between READY and GO

exanpl e "RUN'" [
READY i X
1 P(partl)P
2 P(part2)P
GO]

147

rel ated words READY P(GATE DURATI ON QTl ME
further information
GO al l ows players to continue when every one of them has sent a
GATE, signalling that the first note is ready to play, though
pl ayers that send no sound events at all are exenpt. |n special
applications where a player does not send a first note, it should
send a dunmy GATE on voice O to signal that it is ready:

OFF VO CE OFF GATE
G0 s sequence of operations is as follows:

1 The tinebase is halted
2 Players are executed, using IDLE, until either the sound

event queue is full, or no nore sound events are issued. At
this tinme, the system executes each player's sound events up
until its first GATE event (voice selection immaterial),

including for exanple initial voice assignment events, but
hol ds the GATE and subsequent events on the queue.

4 The tinmebase is allowed to continue, and execution of held
events begi ns.

(EA/I\FQ Create variable [1 only

GVAR - > addr essnunber

GVAR creates a nunber variable. It is used inside [...], which
gives the variable its name. #? and #! are used to fetch from
(read) and store to (set) the variable.

store to vari abl e: nunber vari abl e #!
fetch fromvari abl e: vari abl e #? -> nunber

Vari abl es are not used as much in AMPLE as in other |anguages,
because AMPLE' s stack can be used for tenporary storage and
passing values to and fromwords. Before deciding to use a
variabl e, you should think about whether it would be sinpler to
use the stack.

GVAR variables are global to all players, so a value stored by one
pl ayer can be read by any other . The initial value is undefined.

exanpl es
"var" [GVAR] % create variable 'var'
0 var #! % set toO
var #? NOUT % print val ue

148

varl #? var2 #! %var2 := varl
varl #? 1 #+ var2 #! %var2 :=varl + 1
varl #? var2 #? % swap varl and var?2

varl #! var2 #!

% use of variable to engage chain of next prog at end of piece

"var" [GVAR % variable to hold nessage

"speak" [% sends 'end reached' nessage

REP(

QI MVE - 100 #<) UNTI L(% wait for 100 ticks past |ast event
| DLE) REP % (or longer if long fade past end)

ON var #!] % set var to ON

"listen" [% wait for ON nessage

REP(var #7?) UNTI L(% repeat until var has been set to ON
| DLE) REP] % by anot her pl ayer

"partl1l" | % partl is |ongest part

OFF var #! % initialise message variabl e

C % pl ay rmnusic

speak] % send 'end reached' nessage

c % rest of program

"RUN' [% mai n word

c % start piece playing

listen %wait for 'end reached' nessage

$2 % di scard exi sting comand |ine

"""nextprg""LOAD RUN'] %I eave conmand to chain next program
rel ated words #? #! #+! DI M ARRAY
further information

The GVAR instruction itself includes the storage space for the
vari abl e.

Pi/\[.1- hal t/ conti nue ti nebase
flag HALT
HALT controls the ti nmebase:

ON HALT stops tinebase
OFF HALT allows tinmebase to continue

Wil e the tinebase is stopped, all durations last indefinitely so
that nmusic is frozen. HALT is used to tenporarily halt the nusic
while it is playing. Wile halted, the nusic can still be
advanced by W ND

The tinebase is automatically allowed to continue by READY and
when an error occurs.

149

exanpl es % function keys to hold and resune nusic

*KEY4 ON HALT| M % halt rnusic
*KEY5 OFF HALT| M % conti nue rnusic
*KEY6 192 WND| M % wi nd nmusic while halted

further information

The main difference between HALT and PAUSE is that HALT just stops
t he passage of tinme, whereas PAUSE al so stops the execution of
sound nessages.

##I Pq wait for and get keypress
#I N -> asci i nunber

#I N waits for a character fromthe keyboard and returns its code.

If there is already a character in the keyboard buffer when # N
is called, it returns the character inmmediately.

exanpl e % wait for RETURN press
"RETget" [REP(#IN 13 #=)UNTIL()REP]

rel ated words #OUT (KEY
further information

#IN calls 0O QKEY so that it <can |IDLE wuntil a keypress is
avail able. Calling OSRDCH woul d halt other players.

ﬂBl Pq i nput line from keyboard [1 only
$IN -> string

$IN accepts a line of characters fromthe keyboard, term nated by
RETURN or TAB. The term nating character is included at the end
of the string.

$IN lets the programaccept a line of characters fromthe user
This can be used as a string, or converted into a nunmber using VAL
or &/AL. Leading spaces are included, but they can be renpved

w th $STRIP.

The special key functions of $IN are the same as those of the
systems % comand |ine. The DELETE key renoves the | ast
character, and CTRL-U discards the line but |eaves it on the
screen. No control codes (apart from CR and TAB) are included in
the input line. Al control codes except 22 (select screen node)

150

are sent to the screen via #OUT.
exanpl es
$I N ASC %alternative to #IN, but waits for RETURN

% i nput nunber: nin -> nunber ON
or nin -> OFF if no nunber found

"nin" |

$I'N % get string

$STRI P VAL % convert to nunber

$2] % di scard remai nder of string

% al ternative input nunber: ninz -> nunber (0 if no nunber)

"ninz" [

$IN % get string

$STRI P VAL % convert to nunber

$2 % di scard renmai nder of string

NOT IF(0)IF] % leave 0 if no nunber detected by VAL

rel ated words #I N $STRIP VAL &VAL
further information

$IN bleeps if you try to add another character when the line is at
maxi mum length. $INw Il accept a line right up to the nmaxi mum

[ength that can be acconmobdated on the string stack, but because
there is a total limt (of 128 characters), this length will be
decreased by other strings on the stack.

$IN resets various keyboard and screen options before accepting
i nput, as follows:

*FX255, 1 % make function keys expand

*FX4, 0 % engage cursor editing node
OSWRCH 231 0000000 9%turn cursor on

I DLE pass control to other players

| DLE passes control to other players allowi ng themto continue
execution.

IDLE is used in loops that wait for an external event before
continuing, so that other players are not held up. |IDLE is not
normally required in | oops that issue sound or nusic events.

exanpl e % wait for CTRL key to be down
"CTRLwai t" [REP(-2 QKEY)UNTIL(IDLE)REP]

151

further information

Sone Nucl eus words can wait for an external event before
returning, and they have the effect of IDLE while waiting. These
i ncl ude:

#I'N, $IN

A-G a-g, X, /, ™ (,) (all nusic events)
ACT, DURATION, HALT, FAST, ON PAUSE

+T, -T, =T

(

sound words (PITCH, GATE etc)

sone commands, including WRI TE

I F(start conditional sequence [T only
flag IF(...)IF or flag IF(...)ELSE(...)IF

IF(...)IF carries out the instructions inside only if the flag

is ON. IF(...)IFis used to carry out operations or not

dependi ng on the results of previous cal cul ations.
An)ELSE(can be included between IF(and)IF. In this case, if
the flag was off, the instructions after)ELSE(are carried out.
flag IF(.. done if ON..)ELSE(.. done if OFF ..)IF ...
| F structures can only be used inside word definitions.
exanpl e
"test" [IF("ON')ELSE("OFF") IF $QOUT]
% ON test prints ON
% OFF test prints OFF

further information

IF(treats all non-zero values as ON, so you can use it directly
to test a nunber for non-equality to zero.

) I F end condi ti onal [T only

IF(...)IFand IF(...)ELSE(...)IF enclose words which are
executed conditionally.

See IF(for nore infornmation.

152

I NDEX | eave | oop index [1 only

| NDEX -> nunber

| NDEX | eaves the index of the nost recent FOR(...)FOR | oop
containing it. The index starts at the maxi mum (the | oop count
given to FOR() and decreases by one each tinme around the | oop.
On the last tine around, it is one.

I NDEX | ets the instructions inside the |oop do sonething different
on each pass, usually sequencing through a particul ar range of

values. |In many cases, COUNT is nore convenient.
The I NDEX can be put anywhere inside the FOR (...) FOR | oop,
except enclosed in a separate word ([...]) or intervening
P(...) P structure.
exanpl e

"countdown" [% print nunbers from 20 down to 1

20 FOR(I NDEX NOQUT SP)FOR NL]
rel ated words FOR(COUNT
further information

The functions of INDEX and COUNT differ only in direction of
counting. [INDEX is slightly faster in execution than COUNT.

I NSTALL install nodul e conmand

namestring | NSTALL

I NSTALL installs the nanmed nodule as 'fixed' . Al nodul es already
present in nmenory al so becone fixed.

example "I NT" | NSTALL

rel ated words MCAT MDELETE MLOCAD MPREFI X

further information

| NSTALL stops players 1-10 and all sounds, and nmenory is conpacted
before the new nodule is installed. Any nodule can be | NSTALLed
but then cannot be disposed of with MDELETE. Sone nodul es may
only be installed, and will cause a 'Fixed only' error if an

attenpt is nade to MLOAD them |NSTALL is usually used froma
IBOOT file.

153

K(start key signature

K(...)K sets the key signature for the player. A key signature
is a set of sharps and flats for particular note letters which are
automatically applied to each of those note letters in future.

To set the key signature, enclose a list of the note letters
(upper or |ower case), each with a sharp or flat before it, inside
K(...)K

K(+F +C +G)K
|1
start key signature []
pitch nodification |
note letter

end key signature

Where is single key signature is used throughout a piece, it is
sonmetines set out in a single 'sig" word which also includes SCORE
and BAR instructions, and is then called up by all players.

Al ternatively, the global key signature may be stated after READY
in the formof RUN word which uses a list of P(...)P structures
— see P(for details.

An individual note can be returned to its unnodified pitch by
putting a natural synbol, '=', before it. This effect applies to
that note only. The sharp and flat synbols (+ — or =) al so cancel

the effect of the key signature for the next note.

Chord brackets and nore key signatures are not allowed inside key
signatures. Both upper-case and | ower-case note letters may be

used inside K(... YK, wth the sane effect.
exanpl es

K(YK % C maj or

K(+F +C +G)K % A maj or

K(-B)K % F maj or

amaj " [K(+F +C +G)K]

"sig" | % conpl ete signhature

SCORE K(-B)K

48, 4 BAR]

READY K(-B)K % key signature for all parts (see READY)
rest of RUN ...

154

related words + — =

further information

The key signature can be freely changed in the middle of nusic.
There is no restriction on the nodifications inside key

si gnatures, so non-standard key signatures can be created. This
is particularly useful for mnor keys, since the raised 7th can be
i ncluded, for exanmple, D mnor: K(-B +C)K

Not es i nside key signatures do not play or alter the effective
previous note pitch.

) K end key signature

K(...)K sets the key signature for the player.

See K(for nmore information.

LEN get length or string [1 only
string LEN -> string | engt hnunber

LEN returns the Ilength of the string (the nunber of characters in
it). It leaves the string on the stack as it found it.

exanple LEN O #= %test if string is null (inside word)
LOA\D | oad program conmand
nanestri ng LOAD

LOAD | oads the named programfile. The existing programis
entirely replaced by the new one.

exanpl es "nyprog" LOAD

"myprog" LOAD RUN % (RUN i s user word)
rel ated words SAVE MERGE
further information

LOAD stops players 1-10 and all sounds, and resets player 0's
musi ¢ action chain.

155

1
L. set accent strength

'L sets the anmount of dynamic |evel added by ' (accent), that is,
the strength of accents. The range is -127 to 127.

SCORE sets the accent level to 15.

Renenber that the avail able range of dynam c | evel depends on the
type of voice in use

exanpl e SCORE 30' L % nmake accents stronger
-20 1L % set reverse (quieter) accents
related words ' =1L

=L set dynami ¢ | evel
nunber = L

=L sets the dynanmic |level of hits and notes in the range 0 (soft)
to 127 (loud). 0-127 is the maxi numrange possible, but a
particul ar voice type may respond to only part of this range.

64 is the normal val ue, set by SCORE.

=L cancels any +L or -L level change in progress.

exanpl e
80 =L % set nmedi um | oud | evel
64=L 40 16 +L % set | evel before crescendo

"ppl" [24 =L
"pl" [44 =L
"m" [64 =L
"flt [84 =L
"ff1" [104 =L

% define words for set dynam c marki ngs

— e

related words +L -L

further information

Rermenber that the effect of the | evel depends on the voice type in
use, and possibly the instrunent also. Also note that the dynanic

I evel only takes effect at the start of a note or hit, not within
it.

156

4‘[. i ncrease dynanic |evel
changenunber event snunber +L

+L increases the dynamic |evel of the player's voices by a

speci fied anpbunt over a specified period of tinme. It is used for
maki ng changes of level relative to the current setting, both
instantly and autonatically over a period of tine (crescendo).

The first nunmber is the ampunt of change in the dynamic |evel, and
has the range -127 to 127. A positive value gives an increase,
and a negative value gives a decrease. The second nunber is the
nunber of events, of the length setting in use at the tinme of the
+L, over which the change is to take place. These events can be
notes, rests, hits and ties, and the length setting can be changed
after the +L without affecting the Iength of the change period. A
val ue of zero nmakes the change happen instantly. At the end of

t he change period, the level is left at the final val ue.

The change follows a slope starting at the +L and ending at the
end of the last event. This nmeans that the first note is
unaffected (unless the change is instant), and the first note that
plays at the final level is the one after the |last event on the
slope. In practice, this is the effect you woul d expect.

Renenber that the range of the dynamic level itself is 0 to 127,
and that the effect of the |evel depends on the instrunent in use.
Al so note that the dynamic |evel only takes effect at the start of
a note, not withinit. A crescendo within a note is a feature of
the instrunment, and nust be created by progranm ng an envel ope.

exanpl es
48, 10 4 +L % crescendo of 10 units over four crotchets
12, 40 8 +L XXXX XXXX X %drumroll with crescendo

48, 40 2 +L 12, XXXX XXXX X % equi val ent

60 =L CDEG % a bar with a dynam c |evel of 60

40 4 +L GABC % then increasing to 100 over a bar

40 4 -L Dcha g % t hen decreasing back to 60 over a bar
4, 40 4 +L 48, D(4, FACD) % crescendo over broken chord
"at" | % user -defi ned accent synbo

20 0 +L % i nstant increase by 20 units

20 1 -L % decrease by 20 units after next event

]

157

at Cggg at Cggg % accent both Cs
at E(G&B)/ % accent whol e chord

related words =L -L
further information

The change is halted by another +L, -L, =L or SCORE instruction.

0 0 +L can be used to halt a change, leaving the | evel constant at
what ever value it had reached.

+L cannot be used with a ',' setting of zero (in normal chords,
for exanple). Attenpting to do so gives the 'Division by zero
error

Though the effective range of the level (instantaneous =L val ue)
is O0to 127, the stored value is held accurately up to 255. This
neans that even if a relative change exceeds the naxi mum an
opposite change will still return to the starting point. However,
there is no such nargin at the bottom of the range, and the |evel
is clipped at O.

= L. decrease dynamnic | evel
changenunber event snunber -L

-L decreases the dynamic |evel by a specified anmount over a
specified period of tinme. It is used for naking changes of |evel
relative to the current setting, both instantly and automatically
over a period of tinme (dinm nuendo).

-L is exactly equivalent to +L, except that positive change val ues

gi ve a decrease (and negative change val ues give an increase).
See +L.

BJV\)(| eave | argest of two nunbers

nunber 1l nunber2 -> | argest nunber
MAX | eaves the | argest of the two nunbers and discards the other
It is often used to make sure a vari abl e val ue does not go bel ow
afixed limt, enforcing a mininmm val ue.

exanpl e -5 -2 MAX produces -2

related words MN

158

hJ[:/\1- di spl ay cat al ogue of nodul es conmmand

MCAT lists the names of all the nodules in the systemin
al phabetical order, together with their version nunbers and status

i ndi cat ors.

| ndi cat or

F

The indi cators have the foll owi ng neanings:
Meani ng

Fi xed — fixed nodul es are | oaded using | NSTALL by the
system di sc start-up.

Fi xed nodul es are part of the installation and cannot
be renoved by MDELETE. The comand AMPLE | eaves fi xed
nodul es install ed.

Program owned — the nodul e was | oaded automatically on
| oad of a programthat required it.

P nodul es are renoved automatically when the programis
renoved, and nmay be deleted with MDELETE if not in use

Tenporary — the nodul e was | oaded manual |y by M.QAD,
and nay be renoved at any tinme (provided not in use) by
MDELETE. The command AHFLE renoves tenporary nodul es.

In use as editor — the nodule is the currently in-use
editor.

The nodul e may not be renoved by MDELETE while it is in
use as the current editor

In use by words — one or nore words of the nodule are
in use by the user program

The nodul e may not be renoved while words are in use.
FIND can be used to |ocate the uses of the words.

In use by nodul es — one or nore words of the nodule are
in use by other nodul es.

The nodul e may not be renoved while words are in use.

The F, P and T statuses are nmutual ly excl usive.

159

exanpl e UVCAT

INT 0.2 F PAD 0.2 TU M6 0.7 FW
| | |

Modul e nane |] [] |

Ver si on nunber | [] |

Fi xed nodul e [] |

Tenporary nodule | words in use

in use as editor by program

rel ated words | NSTALL MDELETE M_LOAD NMSHOW

NDEL ETE del et e nodul e conmand

nanmestri ng MDELETE
MDELETE renoves the nanmed nodule. This conmmand is used to renove
nodul es that are no longer required, freeing their space for other
uses.

Note that the nodul e nane nust be given in the correct case —
nodul e nanmes are usually all upper case

The nodul e may not be renoved if it is fixed or in use, that is,
if its MCAT display shows any of the indicators F, U Wor M

exanpl es "PAD' MDELETE

rel ated words | NSTALL MCAT M.QAD

further information

Sone special nodul es | oad further nodul es when | oaded. Wen

del eting such a nodul e with MDELETE, you will also need to delete
the further nodul es manual ly, using the MCAT display as a guide.

IVEM show nmenory usage in bytes conmmand

MEM shows t he nunber of bytes of user nenory in use for various
functions.

The following figures are given:

Wor ds menory used by the program that is, word

definitions, not including editor data
Dat a menory used by editors for public data
System nenory used by players and nusic actions
Arrays nmenory reserved by the programwith DM
Free nmenory free for use

160

Note that the free nmenory nay be fragnmented so that the |argest
single piece may be snaller than the total figure given. See
COVPACT.

exanpl e %VEM
Words: 2569 Data: 234
System 972 Arrays: O
Free: 12330

further information

The total anount of user nmenory depends on the val ue of OSHWM
(determined by ROV fitted to the nachine), and, on a BBC

M croconputer w thout shadow RAM the screen node in use. W thout
shadow RAM node 7 gives the naxi num anount of |anguage nmenory.

The total anount of program nmenory is the anount of |anguage
menory mnus that used by nodul es.

M N | eave snall est of two nunbers
nunmber 1 nunber?2 -> smal | est nunber
M N | eaves the snallest of the two nunbers and di scards the ot her.
It is often used to nmake sure a vari abl e val ue does not go above a
fixed limt, enforcing a nmaxi mum val ue.
exanpl e 45 MN produces 4
related words MAX
M_OA\D | oad nodul e conmand

nanest ri ng MLOAD

M.CAD | oads the specified nodule. The nodule filenane prefix set
with MPREFI X is added to the start of the fil enane.

The | oaded nodule is tenmporary (shows with indicator T in the MCAT
di splay) and can renoved wi th MDELETE when no | onger required.

M_OAD prints nessages indicating the full prefixed nanmes of the
nodul es it | oads.

exanpl es "LEDI T" M.QAD

related words | NSTALL MCAT MDELETE MPREFI X MSHOW

161

further information

The di sadvantage of using M.OAD over INSTALL is that all but the
first nodule | oaded with MLOAD will take up slightly nore nenory
than otherwise. 1In norrmal use, only one tenporary nodule is

| oaded at a tinme, so this has no effect.

Sone special nodul es require further nodul es, and these will be

| oaded autonmatically. MOAD prints nessages indicating the prefixed
nanmes of the original and any further nodules it |oads.

IVODE enter display node conmand
nunber MODE

MODE enters the specified display node.

On BBC M croconputers w thout shadow RAM different display nodes

use different anounts of nmenory, and you will normally use node 7

since this uses |east nenory.

If the menory required by the new nbde is not available, you wll

get the "No room error. |In this case, you may still be able to

change to the new node after entering COVPACT.

exanpl e 3 MDE % change to node 3

related words #OUT COWPACT

further information

MODE can be freely used in programs. Since prograns are saved in

conpacted form LQAD RUN will never give a needless 'No roon
error.

IVFREFI X set nodule filenane prefix conmand
string MPREFI X

MPREFI X sets the filenane prefix to be used by MLOAD and | NSTALL

to load nodules. It allows nodules to be held in and | oaded from

specific directories and drives. The prefix is set to null on

*AMPLE (start-up) and AMPLE (restart).

Modul es are usually supplied under directory "M, so the system
di sc sets "M "MPREFI X on booti ng.

exanmples ":0.M MPREFI X % | oad nodul es fromdrive 0

rel ated words | NSTALL M_.OAD

162

further information

The maxi mum prefix length is 9 characters.

hJE;fi(:‘AJ show list of words in nodule conmand
nodnanest ri ng MSHOW

MSHOW di spl ays the names of all the words in the specified nodul e.

If the nodul e contains auxiliary command words, as do editors,

they appear in a separate list.

Note that the nodule nane is normally in upper case.

exanpl e % PAD' MSHOW
PAD
Aux: CLEAR GET MAKE
NANE PANEL RETGATE TRY

%

rel ated words SHOW MCAT

h/k/l\[.! wite nmusic vari abl es

franel ev keysig barcountlen octnote |length tranvoi ce MAL!

MVAL! wites the inportant nusic variables. The input values are
the sane as the MVAL? output values. See MVAL? for nore
i nformati on.

rel ated words IWAL?

h/k//\[.q> read nusi c vari abl es

MVAL? -> franel ev keysig barcountlen octnote | ength tranvoice

MVAL? reads the inmportant nusic variables — the 'nusic
environnent' val ues used by the 'nusic event' words. It copies
them fromworking locations to a byte-packed formas seven nunbers
on the stack.

MVAL? is supplied for advanced prograns which need to access the
nmusi ¢ settings for special processing, extended nusic functions
etc. It can also be used with MVAL! to save and restore the nusic
variabl es around 'local' rmnusic sections so that their nusic
settings do not affect the settings in the sections that contain

t hem

163

nane position | ow byte hi gh byte

tranvoi ce 1 (top) voi ce (;) transposition (@
length (,) 2 | ow hi gh

octnote 3 effective last note octave (:)

barl en (BAR) 4 | ow hi gh

key signature 5 shar ps flats

franmel ev 6 (bottom) dynamic level (=L) FRAME poi nt er
barl en count 7 | ow hi gh

The 'effective last note' is the conbined record case and letter
used for the determination of the relative pitch octave of the
next note:

bits 0-2 letter nunber: 0 =C, 1
bit 7 case: 0 = lower case, 1

D ... 6 =B
upper case

The 'octave' value is a semitone pitch offset fromm ddle C which
records the current pitch octave, always being a nmultiple of 12.
It is set by ':' and increnented or decrenmented by note letters.

The two key signature bytes record the state of sharp and fl at
nodi ficati on of each of the note letters, one bit per letter

bit 0 C

bit 1 D

bit 6 B

bit =0 nor nal

bit =1 sharp or fl at

The FRAME value is just as returned by FRAME?. Though the nunber
stack is not used for storage of the nusic environnent values, it
is used to hold the nusic action values. These are narked by
FRAME, for access inside ACT(...)ACT. This nmeans that FRAME nust
be preserved through the ACT(...)ACT contents, so if further nusic
events are included inside ACT(...)ACT itself, it nust be saved
and restored. Because FRAME is MVAL, is saved and restored

along with the nusic environment val ues.

exanpl es
MVAL? % save musi c vari abl es
2; 4@
3: CDEG
MVAL! %restore to state before MVAL?
L % return current length setting (item 2)
MVAL?

164

#2 % discard item1
5 FOR(#12 #2)FOR % discard itens 3 to 7

]

"riffact" [%' note expansion'

1 ACT(

MVAL? % save musi c val ues

2 FVAR #? %aqget pitch

@ % transpose to this

12,0: CCGG % play transposed riff

MVAL! % restore rnusic val ues
) ACT]

SCORE riffact % engage note expansi on
0: CD % pl ays 0: CCGG ddAA

ccccFFGG ccccbh+aa+g gggg

rel ated words MVAL!

NEW di scard program conmand

NEW di scards all user words, ready for a new programto be
entered. Editor data (text) is not affected. NEWshoul d be used
with care as its effect cannot be reversed.

To do a conplete clear before entering a new program use the
command AMPLE.

related words AMPLE CLEAR
further information

NEW st ops players 1-10 and all sounds, and resets player 0's nusic
action chain.

NL print new line

NL noves the cursor to the start of the next line, ready for
printing on a new line.

exanpl e " El egy"$OUT NL NL " by John Favero"$OUT NL
prints the follow ng:
El egy

by John Favero

165

related words ALIGN $QUT #OUJT
further information

NL cal | s OSNEW..

NO-I- invert sense of flag

flagl NOT -> flag2

NOT inverts the sense of the flag, that is, it replaces ON by OFF,

and OFF by ON. Is it used in |ogical expressions, and often
before IF(...)IF so the contents are carried out if the flag is
OFF.

exanpl es #< NOT % ON if nunber was greater than or

% equal to previous nunber
$IN VAL NOT IF(0)IF %1 eave nunber or O if none
related words AND OR XOR
further information

NOT is not a bitwi se operator like AND, OR and XOR It treats any
non-zero nunber as ON. For a bitw se NOT, use &FFFF XOR

NQJT print nunber in decimnal
nurmber NOUT

The nunber is printed on the screen in decimal. It is printed at
the cursor position with no formatting spaces.

$&STR can be used to convert the nunber to the equivalent string
for formatting prior to printing.

exanpl es 56 NOUT prints 56
"ppitch" ["Pitch: " $OUT NOUT NL]
32 ppitch % prints Pitch: 32
rel ated words &NOUT $STR
further information

For control over printing format which is not provided by NOUT,
the user can use $STR plus further string operations — see $STR

166

for details.
&NQJT print nunber in hexadeci nmal
nunmber &NOUT

&NQUT prints the nunber in unsigned hexadecimal. It is printed at
the cursor position without formatting spaces.

$STR can be used to convert the nunber to a string which can be
formatted before printing.

exanpl es 255 &NOUT prints FF

n pr egsII [

NL "PA: &' $OUT &NOUT

"OYX: &' $QUT &NOUT]

%-FOO 533CA pregs % prints PA: 9%B3CA YX. &FFOO
related words NOUT $&STR
For control over printing format which is not provided by &NOUT,

the user can use &$STR plus further string operations — see &STR
for details.

G:F | eave of f flag val ue
OFF -> offfl ag

OFF is the 'false' flag constant. It is used with comands and
ot her words that accept a flag, and in |ogical expressions.

exanpl es OFF PAUSE % turn PAUSE of f
flagvar #? OFF #= % equivalent to flagvar #? NOT

rel ated words ON
further information
OFF is represented by the numeric val ue 0.
O\I | eave on flag val ue
ON -> onfl ag

ONis the "true' flag constant. It is used with conmands and
ot her words that accept a flag, and in | ogical expressions.

exanpl e ON PAUSE % turn PAUSE on

167

rel ated words OFF EVERY
further information
ON is represented by the nuneric value -1.
CIQ OR bits of nunbers
nunmber 1 nunmber2 OR -> CRnunber (nunmberl OR nunber 2)
OR perforns the logical OR operation on the bit patterns of the
two nunbers. Each bit in the result is 1 if the corresponding bit

in either of the input nunbers is 1

OR is used both as a bit-w se operator for nanipulating bit
patterns, and as a |ogical operator for flags:

bitl bit2 bit3 flagl flag2 flag3
0 0 0 OFF OFF OFF
0 1 1 OFF N ON
1 0 1 N OFF ON
1 1 1 N ON ON

exanpl es
1 OR % set bit 0 of nunber
#11 -1 #= #12 1 #= R % nunber -> flag

% test nunber was 1 or -1

&1234 &F OR produces &12FF
in binary:
0001001000110100 CR
00000000111111211
produces 000100101 1111111

rel ated words AND XOR NOT

(]ES(:L.I send string to operating system [T only
string OSCLI

OSCLI sends the string to the operating systemas a conmand, as

if it had been entered as the keyboard after *. It allows OS

conmands to be included in prograns, and prograns to make up CS

conmands from ot her data

exanpl es " CAT" OSCLI

168

"LOAD ""code"" A00" OSCLI

"fkey" [% string nunber fkey % defines function key

$12 % swap string to top
"t O$+ % add separating space
$STR $+ % add nunber

"KEY" $+ % add command

OsCLI]

"1 VO CES |M 9 fkey
related words *
further information

OSCLI puts the required carriage return on the end of the string
before sending it to the OSCLI routine.

#QJT send ASCI| code to screen

nunmber #OUT
#QUT sends the nunber to the screen. The nunber may be the
ASCI| code of a printing character, for exanple 65 for A or a

control code, for exanple 10 for |ine feed.

exanpl e 12 #QUT % cl ear text screen
11 #QJT % nove cursor up one

"cls" [12 #OUT]

rel ated words #I N $OUT

further information

#QUT cal | s OSWRCH.

Never send code 22 to sel ect display node. Use MODE instead.

$QJT print string [1 only
string $OUT

$QUT prints the string on the screen. It is used to display

nessages fromw thin prograns. It can only be used inside a

word definition.

$QUT does not print a newline at the end of the string. Use NL
for this.

169

exanpl e "hel | 0" $OUT NL % prints hel | o
% and noves to the next |ine

rel ated words #OUT $I N DI SPLAY

further information

$QUT call s OSASC | .

SBF)/\[) pad string to length with spaces [T only
stringl | engthnunber $PAD -> string2

$PAD pads the string to the required | ength by addi ng spaces to

its start (left end). It is used to nmake strings appear in fixed

colums (fields) when printed.

If the string is not less than the length given, it is left
unchanged.

exanpl es "hell o" 8 $PAD produces " hel | o"

% print nunber in field. nunber fieldnunber nfout
"“nfout" [#12 $STR $PAD $OUT]

;;."$CLN 20 4 nfout 10 4 nfout
% prints : 20 10

rel ated words $STR $&STR $STRI P

F)(start concurrent sequence [1 only
pl ayernunber P(...) P
P(...)P instructs the nunbered player to execute the encl osed

sequence of instructions. Program execution continues with the
instruction after)P, while the nunbered player executes the
encl osed sequence al ongside at the sane tine.

P(...)Pis comonly used in the "RUN word of a nulti-part
piece, to give the parts of a multi-part piece to the players.
The "RUN word contains a list of P(...)P structures, one per

pl ayer, between READY and GO

"RUN" [

READY

...global instructions, such as nix, tenpo setting
1 P(...instructions for part 1...)P

170

2 P(...instructions for part 2...)P

n P(...instructions for part n...)P
GO]

The players are nunbered 1 to 10. To refer to a player once the
pi ece has started, to change its sound with SHARE for exanple, you
identify it with this player nunber

exanpl es

"RUN" [% pi ece for two players
READY mi x

1 P(partl)P

2 P(part2)P

GO]
"canvas" | % pl ay background notes for
READY % interactive sound editing
1 P(1 VOCES Sinpleins
SCORE 16,
REP(-2: 4 FOR(CEGB)FOR) REP
)P
G0 1 SHARE]

related words READY GO PNUM SHARE
further information

The P(...)P structure is often called a P structure and the
contents a P sequence, for convenience.

A player may receive second and subsequent P sequences from any
pl ayer including itself. |t executes themin the order they were
received, beconming idle if it reaches the end of the |ast one.
Player 0 may not be sent P sequences.

Each P sequence synchronises its player to the issuing player,
with the result that a sound event issued at the start of the P
sequence will play at the sanme tinme as one issued at the point of
the P structure (that is, inmediately before or after). This
synchroni sati on works by P(sending the programtine of the

i ssuing player, to be adopted by the destination player before
begi nning the P sequence. Exanples of structures that can be
created using synchroni sed parallel sequences are as foll ows:

* tenporary secondary parts, for exanple:

1 P(... sectionla 2 P(section 2b)P sectionlb)P

171

player 1 plays: <----- sectionla ----- ><---- sectionlb ----- >
player 2 plays: <---- section2b ----- >

* chained nulti-part sections, for exanple:
"movA' [1 P(sectAl novB)P
2 P(sectA2)P
3 P(sectA3)P] %and sinmlarly for novB and novC
* sequenced multi-part sections, for exanple:
8 P(SCORE 3072, nmovA/ novB/ novC/)P % 16 4/ 4bars
READY stops execution of players 1-10 (and discards all voices).
A further feature of the P structure is that each player's first P
sequence after READY begins with the nusic environnent, except the
nmusic action list, copied fromthe issuing player. This allows
any nusic environnent setting comon to all players, such as key
signature for exanple, to be stated once i medi ately after READY
for automatic transferral to every player.

Pl ayers 1-10 use sone additional nenory when in use. MEM displays
the total anmount in use by players.

GO controls the initial execution of players — see GO for details.

) F) end concurrent sequence [1 only

P(...)P instructs the nunbered player to carry out the
instructions inside the brackets, alongside the instructions in
any ot her players.

See P(for nmore information

PAUSE pause/ conti nue sound processing
fl ag PAUSE

PAUSE control s the processing of sounds:

ON PAUSE st ops sound processing
OFF PAUSE allows sound processing to continue

Wi | e sound processing is stopped, the tinebase is al so stopped,
as in the case of HALT. PAUSE is used to tenporarily pause the
music while it is playing. Wile paused, no sounds will be
processed, even if a FAST is issued.

172

A special feature of PAUSE is that while the nmusic is paused, any
DURATI ON i ssued from player 0, for exanple, / entered as a
command, will allow the nmusic to play normally for that period of
time, after which it will pause again.

Si nce PAUSE stops sound processing as well as tine, an ON PAUSE

i medi ately before a note, for exanple, will, as expected, stop
that note fromsounding. ON HALT in the same position would all ow
that note to sound, since though it stops time, there is no tine
interval between it and the sound instructions of the note.

Hence, PAUSE is often nore useful for pausing at particul ar

[ocations in nusic.

Sound processing and ti nebase are autonatically allowed to
conti nue by READY and when an error occurs.

exanpl es
RUN % word to start rnusic playing
ON PAUSE % pause mnusic
48,1111 % allow nmusic to run through 4 beats (only)

OFF PAUSE % al l ow nusic to continue normal ly

C ONPAUSE DE % stops before D
C ONHALT DE % stops on D, that is, before E

further information

Since the sound instruction OFF PAUSE is required to execute in
the ON PAUSE state, it is a special exception — OFF PAUSE sends a
di rect nessage which is acted on i medi ately, and not queued.

Qoviously, it is not useful to include OFF PAUSE fromw thin a
sequence of rnusic events or DURATIONs, since it woul d probably
never be reached. OFF PAUSE is normally issued from outside the
control of the tinebase, that is, in response to an external event
such as a direct command fromthe user

F)PJLJAA | eave pl ayer nunber

PNUM - > nunber

PNUM provi des the nunber of this player, that is, the nunber of
pl ayer executing it. It allows a word or instruction sequence
that mght be used fromany player to find out which player it
is being used from and then nmake settings or decisions
accordingly.

173

exanpl es

PNUM SHARE % return this player to using its own voices
% aut omati c progressive delay of canon parts
"intro" [% delay intro of successive canon parts
PNUM 1 #- % player 1 -> 0, player 2 -> 1 etc
FOR(% repeat <pl ayer nunber — 1> tinmes
48,/1111111] % basic 2-bar del ay
)FOR]
"RUN" [
READY mi X
3 % nunber of parts required in canon
FOR(% repeat for each part
COUNT P(% gi ve instructions to player
intro part % after appropriate delay, start conmon part
)P) FOR
GO]
"pvar" [% definition of a player-local variable -
PNUM % i ndependent | ocation for each player

10 DI M ARRAY]
rel ated words P(
further information

PNUM returns zero if used fromplayer 0, for exanple, if the
following is entered at the % pronpt:

PNUM NOUT

Q<EY test key status or get keypress

negati venunber QKEY -> flag
zeronunber KEY -> asci i nunber

KEY performs the "I NKEY' functions: it tests whether a key is
down, or gets a character fromthe keyboard.

A negative nunber indicates the key to be tested. XKEY gives the
answer ONif the key is down and OFF if it is not. See the BBC
M croconputer User Cuide under 'INKEY' for a list of the negative
key nunbers.

G ven zero as the nunmber, QKEY returns a keypress fromthe
keyboard. If there is no keypress waiting, QKEY returns a
negative nunber. Prograns use 0 QKEY to test for and accept key
presses between other operations.

174

exanpl e "shiftstate" [-1 QKEY] %returns state of SH FT
rel ated words #IN
further information

XEY calls OSBYTE 129. Positive values should not be used.

Q-I-I I\/E return queue tine

QIl ME -> nunber

QTIME returns the current difference, in tinebase units, between
the player's 'programtinme’ and the systemis 'real tine', that is,
t he amount of tine by which program execution is ahead of sound
execution (the actual sounding of nusic).

When a player is playing nmusic nornally, its QIIME is value is
slightly-varying positive. The value of each DURATION it issues
is added to QTl ME, while QTl ME decreases continuously at the

ti mebase (tenpo) rate. If QIlME should go negative, it neans that
the player has failed to deliver nusic (DURATIONs in particular)
as fast as it is being played, and has fallen behind real tine.

Uses of QIlIME include general timng of external events, and
direct control over the differential between programtine
(accunul ated DURATION) and real tine (passed tine).

Control over the tinme differential is particularly useful for
synchroni si ng sound and non-sound out put, for exanple, nusic and
screen nmessages - since sound output is strictly "in-tine' and
screen out put cones directly from program execution, screen output
normal |y appears before any sound out put generated at the sane
point in the program QIl ME can be used to hold back the player's
execution until its previous sound has played, keeping the
differential near to zero. In tine control ternms, programtine is
prevented fromrunni ng ahead of real tine, the queuing of sound
nessages i s disabled and therefore the delay in sound output is
elimnated. Under these conditions, the player's sound out put

will no |onger be independent of systemload, and, l|like the screen
out put, could be held up by any intensive programtask, in the
same or another player. A solution is to program one player to
handl e sound output as normal, and a further player to provide the
screen output, with mnimmtinme delay, froma non-sound score

whi ch sinply nmarks tine between screen nessages.

exanpl es

"keytinme" [%Kkeypress timer — prints tinme after 2nd press
100, 60 =T % 100 ticks/sec & 60 secs/mnute

175

REP(

"Press a key:" $OUT

#I N #2

NL

QT ME

"Press a key again:" $OUT
#I N #2

NL

QT ME

#H-

"Tinme interval
NOUT

"centi seconds"
) REP]

was " $QUT

$OUT NL

"keynmon"
REP(
#IN #2
Qrl ME
0 #12 #-
#11 NOUT SP
DURATI ON
) REP]

"swait" [%waits until
REP(QTI ME 0 #<) UNTI L(
| DLE) HEP]
sectionl

swai t

"Section 1 finished"
section2

$aut

REP(
QTI ME -50 #<) UNTI L(
| DLE) REP

rel ated words DURATI ON

further information

| ast

% wait for key and discard code
% print new line
% record tinme

% wait for key and discard code
% print new line

% get new tine

% cal cul ate difference

Y% print it

% do it again

[% continuous keypress tiner — prints on each press

% wait for
%read tine
% negat e

% print, but keep

% return QI ME to zero

key and drop code

DURATI ON (or music event) conplete
% exit | oop when QIl ME negative
% (while letting other players run)

% wait until done
% print announcemnent

% wait for 50 ticks after last DUR
% programtime run out by 50 yet?
% idle and repeat if not

Note that only one player at atine is allowed to | eave strings on

t he stack over

I DLE, so for exanple unless the player 0 is
prevented frominterpreting input,

the foll owing use of the

"swait' word is not allowed:
"Section 1 finished" swait $OUT.
O her uses of 'swait' include:

176

*

*

waiting until the end of the piece, for exanple to chain
anot her program

waiting until the |ast possible nonent before issuing a sound
that rmust followon fromthe previous sound, but that is also
conputed froma real-tine user-controlled variabl e,
mninmsing delay in the effect of the control

The system comand |ine interpreter takes special action to ensure

t hat

a tined sequence, such as a line of nmusic notation, is not

consuned by tinme that passed before the line was entered: if QTl ME
is less than zero, player 0's programtime set so that QIl ME
returns -1.

QJI T | eave editor conmand

QUT

| eaves the current editor. Common uses include exiting the

current editor before renmoving it with MDELETE, and restoring the
screen to its nornmal state after using an editor

Each

comand to enter an editor does an automatic QU T to | eave

t he previous one. The command AMPLE al so does QUIT.

FQ/\Pd[) get random numnber

RAND - > nunber

RAND

produces a random nunber in the range -32768 to 32767.

You can use RAND to make random deci sions and settings in nusic

so it

plays differently each time. Wth RAND! it produces

repeat abl e nunber sequences which can be used as the basis of
conput er - gener at ed nusi c.

You will often need to Iimt the RAND value to a certain range of
val ues before making use of it. An alternative is RANDL which

provi des nunbers in a specified range.

exanpl es
RAND NOUT % print a random nunber
RAND 0 #< % | eave random flag — ON or OFF
RAND 31 AND % random nunber between 0 and 3'
RAND &E AND % even nunbers between 0 and 14

rel ated words RAND!I RANDL

177

further information

RAND can return 0, unlike random nunber generators in some ot her
| anguages. See RAND! for nore infornation.

RANDI set starting point for random nunbers
nurmber RAND!

RAND! sets the random nunber seed (the nunber from which the next
random nunmber will be generated). For each val ue set by RAND,
successive calls of RAND and RANDL wi || generate the same sequence
of nunbers.

RAND! is used to create repeatable arbitrary nunber sequences.
You use RAND!, preceded by a chosen nunber, before the start of a
[oop which contains RAND or RANDL instructions, so that the | oop
generates the same sequence of nunbers every tinme it is run.

Addi ng a RAND! at the start of any sinple programthat uses RAND
or RANDL will make sure that it gives the same results on each
run.

exanpl e

"rseq" [% nunber rtest

RAND! % print particular sequence
10 FOR(% of ten nunbers

9 RANDL NOUT SP

)FOR NL]
b. .rseq % prints a sequence
1 rseq % prints a different sequence
Ilrrepll [
10 FOR(RAND % print ten different sequences,
3 FOR(% each three tines

#11 rseq) FOR

#2 YFOR] % (di scard sequence seed)
rrep

"random ze" [% set random nunber generator by tine
% of key press — different each tine

READY

"Press a key, please" $OUT

#I N #2 % wait for key
QT ME RAND!] % seed gener at or

rel ated words RAND RANDL

178

further information

Though RAND! and RAND work on standard 16-bit nunbers, the random
nunber generator holds its seed as a 33-bit nunmber — RAND! sets
the lower 16-bit directly, and generates the other 17 bits from
t hese whil e guardi ng agai nst a zero seed, and RAND returns just
the lower 16 bits. Because only part of the seed is accessible
by RAND!I and RAND, using RAND! with a value taken from an out put
sequence wWill not necessarily resune that same sequence.

On systemstart-up (*AMPLE, BREAK or AMPLE), the seed is
undefined, except that it is guaranteed to be non-zero.

RANDL get random nunber in range

maxnunmber RANDL -> nunber

RANDL produces a random nunmber between zero and the nunber given,
i nclusive. The input nunber can be positive or negative.

You can use RANDL to rmake random deci sions and settings in nusic
so it plays differently each time. Wth RAND! it produces
repeat abl e nunber sequences which can be used as the basis of
conput er -generated nusic.

exanpl es
9 RANDL NOUT % print random nunber between 0 and 9
9 RANDL RANDL % random nunber wei ghted to | ower val ues
18 RANDL 9 % random nunber between -9 and 9

"rflag" [% nunber rflag -> randonfl ag
RANDL 0 1=] % 1/ nunber = probability of ON

"randl b" [% maxnunber randl b -> randomunber
%symetrical about 0, e.g. -5 <=5 randlb <=5

#11
2 #* % doubl e range
RANDL
#12 #- % centre on zero
]
"part" [SCORE
REP(12,
2 RANDL 1 #- % choose i ncrenent
10 RANDL 5 #- % choose starting pitch
20 RANDL % choose nunber of notes

179

FOR(

#212 #+ % copy and add increnment to pitch

#11 @0:C % pl ay nunbered semtone

) FOR #2 #2 % di scard pitch and i ncrenent

300 RANDL % choose del ay

100 #+ ,/ % (m ni mum 100)
) REP % repeat for ever
]

"RUN' [

READY

8 FOR(COUNT % choi ces are independent for all 8 parts

P(1 VOCES ins % use a no-sustain, |ong-decay instrunent
part)P

) FOR

GO]

RUN % pl ay

rel ated words RAND RAND

READY nmake system ready

READY prepares the systemto receive new instructions by naking
inmportant initial settings of all variables. It is used by the
user (as a conmand at the start of a session) or the program (as
an instruction at the start of execution) to make sure that any
current activity, such as sounds and players, are term nated, and
that the foll owi ng operations are not affected by previous
settings. It does not affect the word definitions or editor state
and dat a.

In a nulti-part piece, READY is often used in a ' RUN word,
foll owed by sound, P(...)P, and a GO instruction — see P(for
details of this use.

related words P (GO
further information
READY does the follow ng:

* initialises all voices (silencing all sounds)

* frees all voices fromplayers

* sets 0 VA CES throughout

* sets each player to use the sane-nunbered ensenbl e

* stops players 1 to 10, and frees the nmenory used by them

* returns PAUSE and HALT to OFF

* sets tenpo to 48, 125 =T (125 crotchets/mn or 100 ticks/sec)
* di scards any sound events and durations waiting to play

* perfornms a SCORE to reset player 0's nusic environment val ues.

180

Those paraneters of a voice type that apply globally to all voices
of that type, such as overall tuning, are reset by READY, in this
exanpl e, to zero. Sone voice types may carry out other
initialisations on READY

RENAIVE renane word comand

ol dnanmestri ng newnanestri ng RENAME

RENAME changes the nane of the word to a new nane, in the word
definition itself and wherever it is used in other words. This
command is very useful for changing words to have nore meani ngfu
nanes once a programis conplete

RENAVE wi Il not stop you fromusing a nane that is already in use,
but warns you that a duplicate name now exists. You can use
RENAME again to change it to sonething else. Until you do,
conmands will refer to the renamed one rather than the original

so for exanple you cannot use DELETE on the ori ginal

Not e t hat RENAME does not change any editor text.

exanpl es "tenp" "partl" RENAME
"partl" "partla" RENAME

further information

You can use RENAME with a text editor to nmake limted gl oba
changes to the contents of words, for exanple, to change riff to
riffl riff2 wherever it appears in partl, where these are word
nanes:

"riff" "riffl riff2" RENAME
"part 1" GET

"riffl riff2" "riff" RENAME
MAKE

You can use this to replace any word sequence by first replacing
t he sequence by a single dunmy word of the sane nane, for exanple

"part 1" GET
"Q(EQ " []
MAKE

to make C(EG a renanabl e word.

181

REP(start indefinite | oop [T only

The instructions inside REP(...)REP are carried out an
i ndefinite nunber of tines.)UNTIL(can be included to | eave the
| oop when a condition is met.

REP(...)REP is nost commonly used to repeat sonething 'forever',
that is, until the programis stopped by pressing ESCAPE

"flag JUNTIL(' exits the loop (junping to the first word after
JREP) if the flag is ON. The flag can be the result of a
condition test, just as with IF(.

The condition and)UNTIL(can be put anywhere in the loop: with
themat the end, the loop acts like the ' REPEAT UNTIL' of other
| anguages, doing the main contents at |east once:

/ \
REP(..nmain contents.. condition)UNTIL()REP ..
\ /

Wth themat the start, it acts |like a 'WH LE REPEAT', not doing
the contents at all if the condition is satisfied on entry:

/ \
REP(condition)UNTIL(..main contents..)REP ..
\ /

You can conbine these two by putting the JUNTIL(in the m ddle,
and you can have nore than one YUNTIL(in the sane |oop — they act
entirely independently.

REP(...)REP can only be used inside words.

exanpl es

"forever" [REP(0:CGd-E Fc/b)REP]

"retwait" [%wait for RETURN press
REP(#I N 13 #=)UNTIL()REP]

"ctrihold" [%utility conmand: CTRL hol ds nusic, SH FT exits

REP(
REP(-2 QKEY) UNTI L(%exit if SH FT pressed
-1 QKEY) UNTI L(%exit if CTRL pressed
| DLE) REP % until then, idle so players run
-1 QKEY) UNTI L(% exit main loop if SH FT pressed
ON PAUSE % el se CTRL was pressed — pause
REP(-2 QKEY NOT) UNTI L(%wait until CTRL lifted
| DLE) REP % until then, idle so players run

182

OFF PAUSE % when CTRL lifted, release pause

) REP] % return to top
RUN % start nusic playing
ctrlhold % use it

rel ated words FOR() UNTI L(
further information

Up to 23)UNTIL(s are all owed, depending on the nunber of
structures within the | oop.

JUNTIL(treats all non-zero values as ON, so you can directly test
a nunber for non-equality to zero.

) REP end indefinite | oop [T only

REP(...)REP encloses words that are to be executed an indefinite
nunmber of tinmes, with)UNTIL(providing a conditional exit from
t he | oop.

See REP(for nore information.

$REV reverse the order of characters [1 only
string $REV -> reversedstring

SREV reverses the order of the characters in the string, so the

last (right-nost) beconmes the first (left-nmpst) and so on. One

use is to get access to characters at the right end for operations

such as $CHR

exanpl es "hel |l 0" $REV | eaves "ol | eh"

rel ated words $12

RVO CES set voices range

start nunber endnunber RVA CES

RVO CES sets the voice range for the current ensenble, that is the
range of voices that will be selected by a future EVERY VO CE
conmmand, and also itself selects all voices in the range. See

VO CES for the operation of the voice range.

RVO CES is used, as is VOCES, to direct future sound settings
such as instrunents to all voices in a certain group at once.

183

whereas VO CES sets a range that starts with voice 1 and goes up
to the nunber specified, RVO CES allows both the start and finish
nunber to be specified, so is nore useful where there are two

voi ce sub-groups requiring different settings. |In fact,

nunber VA CES is equivalent to 1 nunber RVA CES

related words VA CES VA CE
exanpl e

35 RVOCES briteins %send instrunent to voices 3, 4 and 5
further information
The startnunber and endnunber may be any nunber froml!| to 12, the
hi ghest - nunbered voi ce position available. |If the startnunber is

hi gher than the endnunber, then 0 VO CES, the enpty voice range,
will be set.

SAVE save program conmand
string SAVE
SAVE saves all user words as a programfile.

If the programis conplete, it is usual for it to include a user
word call ed RUN whi ch runs the program

exanpl e " pi ece2" SAVE
related words LQOAD
further information

SAVE conpacts free nmenory, stops players 1-10 and all sounds, and
resets player 0's nusic action chain.

SAVE al so saves any public editor data present.

SCO:QE prepare for nusic words

SCORE resets the players' nusic environnent values, preparing it
for music event words (notes, rests etc.). SCORE is used at the
start of every section of score that uses nusic words, making sure
that settings nade in the previous section are cancell ed.

The full effect of SCORE is:

184

K()K 0 BAR 1; 48, 0: 64=L 15'L 0@ SIMPLEACT

pl us cancellation of any pending effect of +, = - ~ ! (, +L
and -L, plus zeroing of the | word' s ticks/bar count.

SCORE does not affect the tenpo at all, neither resetting it or
cancelling any +T or -T effect in progress.

exanpl e SCORE K(+F)K 192 BAR % si gnat ure
"sig" [SCORE K(+F)K 192 BAR]

related words SIMPLEACT K(BAR; , : =L +L -L 'L @ ACT(

SI_IARE sel ect voice ensenbl e

ensenbl enunber SHARE

SHARE sel ects the ensenble to be used by this player, and carries
out an EVERY VO CE to select all voices in the ensenble's current
range. Though each player initially uses its own ensenble (group
of voices), that is, the ensenble of the sanme nunber, SHARE can be
used to select any of ensenbles O to 10 for the player, causing
sound commands (direct and fromnusic events) to be sent to this
ensenbl e along with those fromany other players that have

sel ected the sanme one.

SHARE i s conmonly used as a comand to select a particular player's
ensenble for adjusting its voices while a piece is playing, and as
an instruction to set up players' voices froma single point in

one 'master' player.

exanpl es
2 SHARE % sel ect ensenble 2 ('player 2' s voices')
1 SHARE string % change all voices of player 1 to 'string

3 SHARE 1 VO CE ins % change player 3's voice 1 only

PNUM SHARE % return to using this player's ensenble
rel ated words P(PNUM VO CE
further information
Here are some of the advanced uses of SHARE

1 Sharing one ensenbl e between two players which use it for

185

al ternate passages, as an alternative to nerging the scores

2 Using a single ensenble fromnore than one player
si mul taneously, for special effects or advanced score
structures

3 Switching a player between alternative ensenbles for instant
i nstrument changes

When a player is created (by its first P(...)P), it uses its own
ensenble, that is, effectively carries out a PNUM SHARE

When using SHARE for conplicated effects, you should renenber that
the VO CE setting (voice selection) is associated with the player
(obviously), but the VO CES setting (voice range) is associ ated
with the ensenble. You will normally only change an ensenble's

VO CES setting fromone player (usually the 'owning' one, the one
of the sane nunber), and in particular, not froma comand entered
while nusic is playing.

When arranging two or nore players to use a single ensenble,

usual ly one (often the 'owner') will be elected to set up the
voices with instrunents — take care that no other send sounds to
the voices before this stage, naking reference to the GO operation
sequence if necessary.

SHQ/V show user words comand

SHOW gi ves an al phabetical |ist of the nanes of the user words,
foll owed by a count of them

exanpl e
YSHOW
RUN act al | next
riff2 riff start sync
wai t
9 words

%
rel ated words RENAME DELETE
further information
It is possible for nore than one word of the sane nane to exist in
a single program RENAME can create this situation. Comands

wi Il access the nost recently-created version, and this can be
renamed to allow access to the others.

186

The user word list is searched in reverse order so that preference
is given to a longer nane rather than a | eading substring of it.
This ensures that with the words 'fred" and 'freda’ on the SHOW
list, the input 'freda’ would be interpreted as the word 'freda'
not the Wrds 'fred" and 'a'.

SI G\I test nunber is negative
nunber SIGN -> flag

SI GN takes a nunber and | eaves flag indicating its sign — ONif
negative, OFF if positive or zero.

exanpl es ... SIGNIF(...)IF %do if negative
related words #> #<
further information

SIGN is a faster alternative to 0 #< .

SI IVPL EACT renmove all nusic actions

SI MPLEACT renoves all nusic actions on this player. It is used to
initialise the player's nusic action chain to the initial, enpty,
state.

O her words that renove nusic action include SCORE, which perforns
SIMPLEACT and initialises all other nusic environnent val ues, and
ACT(, which allows an action to be renoved individually by
reference to their definitions.

rel ated words SCORE ACT(

further information

SI MPLEACT is useful for clearing all actions without having to
know which are in use and then clearing themindividually.

SP print a space

SP prints a space on the screen. It is a shorter and clearer
equivalent to 32 #QUT. SP is comonly used to separate nunmbers on
one | i ne.

exanpl e 5 NOUT SP -4 NOUT prints 5 -4

rel ated words #OUT NL

187

S-I-OD stop program

STOP stops the program (including players 1-10) and all sounds.

STOP is used either as a conmand to stop a piece that is playing,
or as an instruction in a word definition to end execution
i mredi ately and return control to the % pronpt.

When a piece ends naturally, the nenory used by players 1-10 is
not freed (since they could be waiting for further instructions),
but STOP frees this nenory, naking sure is it available for other
uses.

exanpl es
9RUN % conmmand to start playing
USTOP % end pi ece prematurely

#IN 13 #= IF(STOP)IF %end on RETURN
further information
STOP does the follow ng:

silences all sounds

stops players 1-10, and frees the nmenory used by them
sets OFF PAUSE and OFF HALT

sets player 0's note context to norna

sets player 0 to use its own voices (ensenble no. 0)

* % Xk F

It does not free voices.

35531-FQ convert nunber to decinal string representation [] only
nunmber $STR -> string

$STR converts a nunber to the string of characters representing
the nunber in decimal, including a |leading mnus sign if the
nunber is negative. It is comonly used to fornmat or process the
text of a nunber before printing it, for exanple to put it in a
fixed size field with $PAD
exanpl es

-425 $STR produces "- 425"

"fnout" [% nunber fieldnunber fnout
% print nunber in field of specified width

188

#12 $STR % convert to nunber
$PAD Y%ad to specified nunber of spaces
$OUT] % print string

rel ated words &$STR VAL $PAD

éi35531-FQ convert nunber to hex string representation [1 only
nunber &$STR -> string

&$STR converts a nunber to the string of characters representing
t he nunber in hexadecimal (not including the & sign). It is
commonly used to fornmat or process the text of a nunber before
printing it, for exanple to put it in a fixed size field with
$PAD.

exanpl es
254 &$STR produces "FE"
"& nout" [% nunber fi el dnunmber fnout

% print nunber, with & ,in field of specified width
#12 &BSTR % convert to nunber

"&" $+ %add & to start
$PAD % pad to specified |l ength with spaces
$OUT] % print string

rel ated words $STR &VAL $PAD

35531-FQI F) renove | eadi ng spaces fromstring [1 only

stringl $STRIP -> string2

$STRI P renoves any spaces that are on the start (left end) of the
string.

$STRIP is often used in the processing of string input, in
particular to renmove | eadi ng spaces froma nunber in string form
bef ore converting to nuneric formby VAL or &AL (these do not
strip | eading spaces thensel ves)

exanpl es

hel | 0" $STRI P pr oduces "hel | 0"

"o10" $STRI P pr oduces "10"
"o10" VAL pr oduces " 10" OFFflag % no nunber found
" 10" $STRIP VAL pr oduces "" 10 ONflag % nunber found

189

rel ated words $PAD VAL &VAL

=T set t enpo
nunber =T

=T sets the tenpo in beats per mnute. The tenpo is the rate at
whi ch musical tine passes, that is, a nmeasure of how |l ong a single
ti nebase tick (one unit of DURATION or ',') lasts. It is global
that is, applies throughout the system to all players.

The "beat' is the current ',"' setting, so an =T instruction is
often preceded by a ',' setting to nmake it conplete. 1In fact, the
final tenpo, in ticks per mnute, is the beat value (ticks per
beat) multiplied by the =T nunber (beats per minute), so either may
be used to control the tenpo. One exanple of this is a sequence

of nmusic events starting with =T — the resulting speed is

i ndependent of the prevailing beat setting:
nunber, 125=T XXXX % speed i ndependent of nunber
=T cancels any +T or -T changes in progress.

READY sets the tenmpo to '48, 125 =T', which is exactly 100 ticks
per second, or 6,000 ticks per mnute.

exanpl es
READY 100 =T % sets tenpo to 100 crotchets per mnute
1, 50000 =T % set tenpo to 50000 ticks per mnute

"temrpo" [60 =T] %w Il always set the tenpo to 60 beats

% per minute, regardless of ',"' value.
related words , +T -T READY
further information

The range of =T control is 92 to 65535 ticks, or with a beat
setting of '48," , 2 to 1365 crotchets per m nute.

=T issues a tenpo sound event which is interpreted by the current

tinme server. Non-standard tine servers nmay provide alternative
functions for =T.

190

4'1- i ncrease tenpo changenunber
beat snunber +T

+T increases the tenpo by the specified anount, over the specified
nunber of beats (',' units). The change nunber is exponential in
effect, with 0 giving no change, 64 doubling the tenpo and -64
halving it. The range of the change nunber is -127 to 127.

+T is used for a range of relative tenpo changes, both gradua

(' accel erando’ and 'rallentando’) or instantaneous.

The exponential scale ensures that tenpo changes of opposite sign
are entirely conplinmentary - any change can be reversed with a
change of the sanme magni tude and opposite sign. Also, tenpo
changes can be specified as fractions, using one change for the
top nunber, followed inmediately by a second for the bottom

Each +T instruction cancels any +T or -T effect in progress, and
begins its effect fromthe tenpo reached at that tine.

exanpl es
64 0 +T % i nstantly doubl e tenpo
20 16 +T % accel erando (gradual speed-up)
C/ID Ecl/ % of 20 units over 16 beats
EFG A/
-37 8 +T % decrease by 50% over 8 beats ('rallentando')
XXXX XXXX
XXXX XXXX
37 0 +T % instantly restore tenpo ('a tenpo')
related words , =T -T

further information
The new tenpo, expressed as a percentage of the old, is given by:

(changenunber / 64)
100 x 2

Here is the new tenpo for each of a range of change val ues,

191

expressed as a percentage of the ol d:

changenunber rel ative tenpo changenunber rel ative tenpo

-64 50 0 100
-56 54.5 8 109
-48 59.5 16 119
-40 64. 8 24 130
-32 70.7 32 141
-24 77.1 40 154
-16 84.1 48 168
-8 91.7 56 183

64 200

A decrease can be achieved either by +T with a negative val ue, or
-T with positive val ue.

The preci se percentage tenpo change is:

(changenunber / 64)
100 x 2

The exponential scale allows tenpo changes to be conbined for
greater or nore-convenient control. |In addition to changes that
return to the original after a time, the applications include:

* multiple precision — a second i nmedi ate tenpo change adds
extra precision for w de changes

* fractional changes ('netrical nodul ati ons') — one change
does the top nunber, and a second does the bottom for
exanpl e:

%total tenpo change of 3/2
101 0 +T % x 3
-64 0 +T %/ 2

+T and -T issue tenpo sound events which are interpreted by the
current time server. Non-standard time servers may provide
alternative functions for +T and -T.

= 1- decrease tenpo
changenunber beat snunber -T

-T decreases the tenpo by the specified anount, over the specified
nunber of beats (',' units). The change nunber is exponential in
effect, with 0 giving no change, 64 halving the tenpo, and -64
doubling it.

-T is used for a range of relative tenpo changes, both gradua
('rallentando’ and 'accelerando’') or instantaneous. |Its effect is

192

i dentical but opposite to that of +T. See +T for further
i nformati on.

related words =T +T

TYPE type word definition on the screen conmand
nanmestring TYPE

TYPE types the contents of the word on the screen, as it would

appear in a text editor. It is useful for quickly exam ning words

wi t hout using the editor, which nay have other text in it.

TYPE al so works on editabl e nodul e words, for exanple, preset
i nstrunents.

exanpl e "sig" TYPE
UI\III L(exit fromindefinite | oop [1 only
REP(...)REP encloses words that are to be executed an

i ndefinite nunber of tines, with)UNTIL(providing a conditional
exit.

See REP(for nore information.

193

UNUSED make voi ce(s) unused

UNUSED nakes the currently sel ected voice or voices unused
freeing a voice of that type for use el sewhere. UNUSED voices
make no sound, and do not respond to sound conmmands or mnusic
events.

UNUSED i s used to recover voices when they have been finished
wit h.

exanpl e
3 VO CES insl %t hree voices
éIQKXCE UNUSED % free 3 for use el sewhere
3 VO CES insl %t hree voices
CN.VCXCE UNUSED % free all voices on this player
2 VO CES ins2 % assign two for smaller chords

related words VO CE VO CES RVA CES
further information
Si nce, assigning any voice will replace the voice previously in

use, UNUSED can be thought of as a voice type itself, but one
which has no limt on the nunber in use.

\/I\L_ convert string to unsigned deci mal nunber [T only
string VAL -> renainingstring nunmber ON if found
-> renaini ngstring OFF if not found

VAL converts the string representati on of a decimal nunber into a
nunber on the stack, |eaving the renainder of the string. The
nunber is left with ON on top, or if no nunber was found, OFF is
left. VAL is used with $INto let the programaccept nunbers from
t he keyboard while running.

VAL expects the first character of the string to be a decim
digit: it does not ignore |eading spaces or recogni se a m nus
sign. Leadi ng spaces should be renoved beforehand with $STRI P
exanpl es

"10 20" VAL produces " 20" 10 ON

nin" [%input deci mal nunber
% nin -> nunber ON if |egal nunber found

194

% nin -> OFF if legal number not found

$I'N % get string

$STRIP % renove | eadi ng spaces
VAL % convert to numnber

$2] % di scard remaining string

“Inin" [%get a line of nunbers entered by the user

%Il nin -> nunber-n ... nunber2 nunberl1l count nunber
$I'N % get line
0 %initial count of nunbers found

REP(
$STRIP VAL %l ook for nunber
NOT JUNTIL(%exit if none found (non-valid, or end of |ine)

#12 % swap found nunber and count, so count is on top
1 #+ % i ncrement count

) REP

$2] % drop remai nder of string

"trylnin' [%test routine

REP(

[nin % get |ist of nunbers, with count on top
FOR(NOUT SP)FOR % print them (in reverse of input order)

NL) REP] % repeat for ever

rel ated words $STR &VAL

&VAL convert to unsigned hex nunber [1 only
string &AL -> renuiningstring nunber ON if found
-> renaini ngstring OFF if not found

&VAL converts the string representation of a hexadeci nal nunber
(with no 5) into a nunber on the stack, |eaving the renainder of
the string. The nunber is left with ON on top, or if no nunber
was found, OFF is left. &VAL is used with $INto let the program
accept nunbers fromthe keyboard whil e running.

&VAL expects the first character of the string to be a hexadeci mal
digit: it does not ignore |eading spaces or recogni se a m nus
sign. Leadi ng spaces should be renoved beforehand with $STRIP.
exanpl es
"OF 3C'" &VAL produces " 3C' 15 ON
"&nin" [%input hex nunber
% &nin -> number ON if |egal nunber found
% &nin -> OFF if legal nunber not found
$IN $STRIP $VAL $2]

"“dhnin" [% get nunber input in either form dddd or &hhhh

195

% dhnin -> number ON if |egal nunber found

% dhnin -> OFF if legal nunber not found
$IN $STRI P % get line and strip spaces
1 $- ASC % get initial character as ascii nunber
#11 "&" ASC #= %if it is & ...
| F(&VAL) ELSE(% treat as hexadeci mal
$CHR $+ % else out the initial character back on,
VAL)IF % and treat as deci mal
$2] % di scard remai nder of string

rel ated words &$STR &VAL

VO CE sel ect voice(s)

voi cenunber VA CE

VO CE sel ects the specified voices to receive sound instructions
i ssued by the player. The voices are nunbered from 1 upwards.
VO CE is used to send instrunments and i ndividual sound
instructions to a particul ar voice.

VO CE shoul d not be confused with VO CES, which selects nore than
one voi ce simultaneously.

Note that VO CE selects the voice for sound instructions, not
musi ¢ events (notes, hits, rests and ties). Misic event voice
selection is done using ';".

The voice selection is only valid for the sound instructions up to
the music event, since these instructions set it back to EVERY

VO CE. You nmust use VO CE again before the next group of sound

i nstructions, for exanple

..music.. n VOCE ..sound.. ..nusic.. n VOCE..sound..
EVERY VA CE has the special effect of selecting voices in the
current voice range (set by VO CES or RVA CES) sinultaneously, so
that the follow ng sound instructions are sent to all of them
exanpl es

sectl ON VOCE instru sect2 ... % new i nstrunent

sectl 1 VOCE instrl 2 VOCE instr2 sect2 ...
%di fferent instrunments on each of 2 voices

3 VOCES tomtom % 3 voices with the sane instrunent...
1 VOCE -7 PITCH % but different variations
2 VOCE 0 PITCH
3 VOCE 12 PI TCH

196

related words VA CES RvA CES
further information
The foll owi ng argunent val ues are all owed:

OFF sel ect no voi ces
1-12 sel ect nunbered voi ce
EVERY select all voices in current range (set by VO CES/ RvO CES)

Each nusic event achieves its effect by sending sound instructions
which are nornmally invisible to the user, and it uses UJCE to
direct themto the voice specified by ';'. The event finishes by
executing EVERY VO CE, thereby | eaving the voice selection in a
defined state. Because of this, any sound instruction w thout a
VO CE instruction that lies after a nmusic event will be applied to
all voices in the current range.

Not e t hat SHARE and VO CE can be used together to select any voice
—in effect, SHARE sets the top digit (the ensenble nunber) and
VO CE the bottomdigit of a conplete two-digit voi ce nunber.

More care is needed in using VOCE when DURATION (or '"\') is in
use to nove up and down mnusical tine. Under these conditions, the
voi ce selection cannot be relied upon after a DURATI ON because a
conflicting voice selection could be left in this tinme interval by
a VOCE fromlater or earlier in the program The rigorous nethod
is to confirmthe voice selection with VO CE between each

DURATI ON and the followi ng sound instruction.

VO CEI set voice settings in frane

voi cenunber VA CE! or EVERY VA CE!

VO CE! sets all non-zero voice values in the current nusic action
frane to the specified value. In fact, it will operate on any
seven nunbers below the current frane pointer, but its use is
usual ly confined to action franes.

VO CE! is used to set the destination voice prior to calling ACT,
usually fromwithin ACT(...) ACT. The standard nusic action
frame has three voice values (see ACT for details) each of which
is either OFF, or the voice nunber, depending on the event

type (note, rest etc.). VO CE! changes the voi ce nunber only,

| eavi ng OFF val ues unchanged and so preserving the event type.

exanpl es

2 VOCE ... %set voice to 2

197

"vtop" [% flag vtop
% redirect each voice to player of the same nunber
%i.e. voice 1 to player 1, voice 2 to player 2 etc.
% used for passage of large chords, for exanple

20 AND ACT(

5 FVAR #7? % get event voice (actually, gate voice)
SHARE % sel ect pl ayer

1 VA CE! % change all voice nunbers to 1

ACT % execut e event

)ACT]

related words VO CE ACT(MVAL

VO CES set nunber of voices

nunmber VA CES

VO CES sets the 'range' of voices to include those from1l to the
nunber given, so that these voices will be selected together by a
future EVERY VO CE comand, and also itself selects all voices in
this range. Whenever an EVERY VO CE is used, all voices in the
range set by the previous VOCES will be selected. The range
remai ns set until the next VO CES, RVO CES or READY.

VO CES is used to direct future sound settings such as instrunents
to all voices in a group at once, in particular, to the nunber of
voi ces specified, starting with voice 1. It should not be
confused with VO CE which selects voices, but doesn't set the

voi ce range.

The voice range belongs to the ensenble (the object selected by
SHARE) not the player itself, so VOCES (and RVYO CES) is directed
to the ensenble currently selected by the player. This nmeans that
when two players are accessing the sane ensenble (after one has
SHAREd t he other), they share a conmon voi ce range, and one player
could inadvertently change the effect of the other's sound
instructions by altering the voice range. For this reason, when
accessi ng another player's voices through SHARE, you shoul d not
normal Iy use VO CES (or RvVA CES).

exanpl es

READY 8 VO CES insl

.4. VO CES insl % four identical voices,
3 VOCES -12 PITCH %but 1 to 3 have pitch set
4

VA CES % restore range for future EVERY VO CEs

198

related words VO CES VA CE RvVA CES
further information
The VA CES nunber should be in the range 0 — 12.
READY sets the voice range of each ensenble to 0 VO CES.
W ND advance tine
ti cksnunmber W ND
WND instantly advances the system s real tine by the nunber of
ti nebase units given. Its uses include 'wi nding on' a piece of
musi ¢ by a certain anount, and advancing tine manual ly when the

ti mebase i s stopped by HALT.

Note that it is not often useful to use WND in the ON PAUSE
state, since sound execution is conpletely halted.

exanpl es
300 WND % wi nd on by 300 ticks
"bw' [% barsnunber bw %w nd on by n 4/ 4 bars
48 #* % ticks per beat
4 #* % beats per bar
W ND]

"part9" [%sinple 'tinebase distortion' adding global 'sw ng'
% feel by conpressing second hal f of beat

SCORE 24, |/ % nove to niddle of crotchet beat

REP(12 WND %l eap through next 12 ticks (vary to taste)

48,/)REP] % wait for one crotchet to pass

"partl1l" [% denonstration

SCORE

4 FOR(48, XXXX)FOR % crotchet hits unaffected

REP(24, XX XX XX XX)REP % quavers are played as triplets,
% for exanple, 12, X/ X/ X/ X
%is played as: 12, X/ X X/ X

199

V\RI TE di splay text of all words conmand

WRITE wites the text of all user words to the screen, from where
it can be printed, or sent to a file with *SPOOL. The spool ed
text can be converted back to a program using the *EXEC conmand.

WRI TE adds an enpty definition for each word before witing the
real definitions in al phabetical order. This ensures when
recreating the programfromthe text, that a word definition can
use another word (or itself) which may not have been conpletely
conpiled at that point.

exanpl es
CTRL-B WRI TE
CTRL-C % print program
*SPOOL t ext % spool programtext to
VWRI TE %file "text' for editing
* SPOOL % with word processor
AVPLE % recreate program after
*EXEC t ext % editing text

rel ated words TYPE

)(play hit

X plays a "hit' on the current nusic voice. X is very like the
note letters A-G except that it does not set the pitch. It is
used to play hits ('beats') in percussion scores and to restrike
the last note in pitched music scores.

The hit takes as its length the basic length (set with ',"),

t hough you can extend it with the hold synbol, /. Many percussion
instruments have a sound that dies away i medi ately, so this wll
only affect the amount of time to the next hit, not the |length of
the sound. Holds are used, rather than rests, to mark silent
beats between hits, allowing the sound to die away naturally. A
rest cuts a long sound short.

X [n

|
hit (sounding beat) [
hol d (non-soundi ng beat) rest (cuts short previous hit)

Hits can be included in chords exactly |ike notes, for nulti-voice

per cussi on scores. Alternatively, a user '"hit' word can be
defined for each voice — "y" [n;X] where n is the voice nunber

200

Chord brackets are then only used when nore than one hit plays on
t he same beat:

yliilzllyylllz(y)lll
| |

hit on voice 1 | |
hit on voice 2 hits on both voices together

The pitch of a percussion instrument is determined as part of its
definition, with PITCH

Used in normal (pitched) scores, X serves to repeat the last note
on that voice. It is useful for repeating chords using ON

exanpl es XXXXXI [XXM XX % rhythmwi th one short hit
yliilzllyylllz(y)ll/ % t wo-voi ce rhythm
% wi th one double hit
C(GE) EVERY; XXX 1; % repeated chord
rel ated words ;
further information

The length of the hit is added to the bar's total of note |engths
for checking by the next bar line.

X calls the player's current nusic action list, passing the
foll owi ng stack frame:

description val ue default destination
pitch voice OFF VA CE

pitch undefi ned Pl TCH

| evel voice event voice VA CE

| evel cal cul ated | evel VEL

gat e voice event voice VA CE

gate ON GATE

duration "," setting DURATI ON

On return fromthe action list, it executes EVERY VOCE to return
the voice selection to a defined state.

If ~is applied to X, it reduces it to a hold (with the default
musi ¢ action) — see ~ for details.

201

)((]FQ excl usi ve-OR bits of nunbers
nunber 1 nunmber2 XOR -> nunber 3

XOR perforns the | ogical exclusive-OR operation on the bit
patterns of the two nunbers. Each bit in the result is only 1 if
the corresponding bits in the input nunbers are different.

XOR is used both as a bit-wi se operator for manipulating bit
patterns, and as a |ogical operator for flags:

bitl bit2 bit3 flagl flag2 flag3
0 0 0 OFF OFF OFF
0 1 1 OFF ON ON
1 0 1 ON OFF ON
1 1 0 ON ON OFF
exanpl es

&1234 &FF XOR produces &12CB

in binary:
0001001000110100 XOR
00000000111111211
produces 0001001011001011
&FFFF XOR ... %invert bits in nunber (bit-w seNOT)
3 XOR ... %toggle 1 -> 2, and 2 -> 1

related words AND OR NOT

202

| ndex

atog
Ato G
ACT

ACT(
addi ti onal
ALl GN
AVPLE
AVPLE comrands

AND

arithmetic expressions
ARRAY

ASC

asc

function and status
BAR

i nterfaces

calling routines

characters and strings

CLEAR

CODE

conmuni cations with
user routines

command node

comand utility

conmands

COVPACT

concurrency

condi ti on expressions

conditionals and | oops

constants

COUNT

DELETE

9, 23, 25, 153

di ctionary of words
DM

direct text

DI SPLAY
DURATI ON

KEY9

edit node
editor data

edi tor non-text
edi tor text

edi tor types

121
119
32,121
124

56

55, 127
128

13
45,59, 128
39
45,129
130

49

82

132

61

55

27,133
61, 62, 134

65
10
21
56
20, 134
59
58
58
40
58, 135

136

81

45, 137
19

140
31, 140
11

10

27

19

19

26

editors

ERRORS

EVERY

exam ni ng nodul es
exanpl e prograns
execution control
ext ensi on

F (MCAT i ndicator)
FAST

FCOPY

FI ND

fi xed nodul es
flag operators
flags

FOR(

FRAME

FRAME

FRAME?

FVAR

GATE
&0
GVAR

HALT

I F(

I F(..)ELSK
IF(..)IF
IF(..FOR(..)FOR. .) I F
in-fix

#I N

| NDEX

i ndex of words

i nput and out put
i nput and out put
| NSTALL

)IF

i tens

i ntroduction
j ukebox

K(

LEN

[ength

LOAD
| oadi ng nodul es

203

26
67
143
22
11
57
21

25
34, 143
44,143
144
25
45
44
144
44, 145
44, 146
44, 146

32,44, 146

31, 36
147
45, 148

35, 149

152
57
57
58
39
53,55
58, 153
84
55
82

5

11

154
49, 155
29

23, 24, 155
23

| ocating user routines
M (MCAT i ndi cat or)
nmachi ne- code

pr ogr anmi ng
MAX
MCAT
MDELETE
VEM
Menory usage
M N
M.QAD
MODE
nodul e del eti on
nodul e functions
nodul e | oad on startup
nodul e | oadi ng

by program
nodul e | oadi ng by user
nodul e nenory usage
nodul e names
nodul e wor ds
nodul es
nodul es and editors
novabl e nodul es
MPREFI X
VBHOW
nusi
nusi
nusi
nusi

actions
and sound
envi ronnent words
event words
nmusic interpretation
Musi ¢ wor ds
nmusi ¢ and sound
event input
MVAL!
MVAL?

OO0 0O0O0

NEW

NL

NOT

NOUT

nucl eus

nucl eus words
nunmber s

nunbers and fl ags

OS conmands
OFF
ON

65
159

61

158
22,25, 159
24,160
20, 160

20

161

23, 25, 161
20, 55, 162
24

21

23

24

24

25

22

18

9

21

25
22,162
22,163
32

29

29

30

31

29

56
163
163

24,165
55, 165
45,59, 166
41, 55, 166
9

18

55

39

12
167
167

ON VA CE
OoR

OSCLI
OSHWM
#OUT

P (MCAT i ndi cat or)
P(
passi ng nunbers
PAUSE
Pl TCH
pitch
pl ayer control
i nstructions
PNUM
post fix
program
progranms and words

XEY

qQri Ve

gueue control
sound word

QUT

routines in
| anguage RAM
routines in

32

45,59, 168
63, 168

63

55

159
170
42
34,172
31, 36
29

60
60, 173
39
9
17

55,174
34,63, 175

34
177

63

operating system RAM 63

routines in ROM
RAND

RAND

RANDL

random nunber s
readi ng nodul e word
READY

RENAME

REP

REP(

RUN

RvO CES

SAVE

SCORE

Screen di spl ay
SHARE

SHOW

SI GN

signed integers
S| MPLEACT

204

64
47,177
47,178
47,179
47
25
63, 180
181
58
182
54
35, 183

184

184

12

35, 185
186

45, 59, 187
39

32,187

sound events

SP

stack operators
starting a new session
starting the system
STOP

st oppi ng execution
string operators
string stack capacity
string stack usage
synchroni sation
system effects
syst em wor ds

T (MCAT indicator)
t he nunber stack

t he sound queue
time control
time server
TYPE

t ype- gl obal

U (MCAT i ndicator)

UNTI L

UNUSED

user routine
appl i cations

user word formatting

user words

usi ng AMPLE

usi ng strings(conmand)

usi ng strings(pl ayers)

usi ng the conputer
keyboard

using the input line

VAL

VAL/ &VAL

vari abl es and storage

VEL

Vva CE

voi ce assi gnment

voi ce sel ection

voi ce server

voi ce servers

VA CE!

Va CES

W (MCAT i ndicator)
W ND

voi ce event

32
187
43
15
9
60, 188
60
49
54
50
56
56
18

159
41
33
34
21
193
37

159
58
36, 194

61
19
18
9

51
53

10
51

194

55

45

31, 36
35, 196
36

35

21

37
32,44, 197
35, 198

159
34, 199

word nani pul ati on
wor ds
VWRI TE

X
XOR

zero page wor kspace

#11
#12
#2
#212
#2121
#<
#>
#?
#B!
#B12
#B?
#I' N
#OUT

>>— - ST

205

19
18
200

200
45, 59, 202

6

101
101
102
105
105
106
107
108
117
110
111
93
93
94
94
95
96
96
96
97
97
98
98
99
131
131
132
150
169
112
119
109
112
92
93
113
115
116
117
118

! 91

$+ 49, 99
$- 49, 99
$12 100

$2 100
$CHR 49, 133
$IN 53, 55, 150
$aut 55, 169
$PAD 49,170
$REV 49, 183
$STB 188
$STRI P 49, 52, 189
& 101
&$STR 189
&NOUT 55, 167
&VAL 195

"L 156

) ACT 127

) ELSE(143

) EOR 145
)IE 152

) K 155

)P 172

) REP 183

) UNTI L(193

+L 157

+T 191

-L 158

-T 192
<cr> 90
<space> 90

=L 156

=T 190

206

